Skip to main content

Biochar: A Potent Adsorbent

  • Chapter
  • First Online:
Biochar and its Composites

Abstract

Biochar has emerged as a promising treatment solution for global water and air pollution problems due to its abundant feedstock, low cost, and adaptable physical and chemical properties. Numerous studies have demonstrated biochar’s effectiveness in adsorbing contaminants from water and air due to its high surface area, ease of surface modification, and potential for regeneration and disposal. Biochar has been shown to effectively remove heavy metals, organic pollutants, and nutrients from water and air. Moreover, biochar production can be environmentally friendly by utilizing organic waste materials as feedstock. Overall, adsorption performance is influenced by biochar characteristics, contaminant concentration and characteristics, operating conditions, adsorbent dosage, temperature, contact time, solution pH, and the presence of interfering species. The main factors impacting biochar characteristics are feedstock type, pyrolysis conditions, and activation or modification method. Furthermore, the complex structure of biochar makes adsorption a complicated process with the possibility of different adsorption mechanisms such as electrostatic interactions, π-π interactions, hydrophobic interaction, surface complexation, and others. This chapter discusses the effects of biochar characteristics on its adsorption performance. Furthermore, the improvements in the use of biochar to adsorb inorganic and organic contaminants from air and water are explained, and the mechanisms of adsorption by overviewing the connections between the characteristics of biochar and its adsorption performance are discussed. Finally, the opportunities and limitations of using biochar in adsorption systems and its industrial applications are discussed, and potential future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zoroufchi Benis K, Motalebi Damuchali A, McPhedran KN, Soltan J (2020) Treatment of aqueous arsenic—a review of biosorbent preparation methods. J Environ Manage 273:111126. https://doi.org/10.1016/j.jenvman.2020.111126

    Article  CAS  Google Scholar 

  2. Zoroufchi Benis K, Sokhansanj A, Norberto J, McPhedran KN, Soltan J (2022) A binary oxide-biochar composite for adsorption of arsenic from aqueous solutions: combined microwave pyrolysis and electrochemical modification. Chem Eng J 446:137024. https://doi.org/10.1016/J.CEJ.2022.137024

    Article  CAS  Google Scholar 

  3. Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellul 243(24):1171–1197. https://doi.org/10.1007/S10570-017-1194-0

  4. Quaranta ICC, Pinheiro LS, Gonçalves DV, Peixoto HR, Lucena SMP (2021) Multiscale design of a pressure swing adsorption process for natural gas purification. Adsorption 27:1055–1066. https://doi.org/10.1007/S10450-021-00330-Y/TABLES/9

    Article  CAS  Google Scholar 

  5. Saleh TA (2022) Kinetic models and thermodynamics of adsorption processes: classification 34:65–97. https://doi.org/10.1016/B978-0-12-849876-7.00003-8

    Article  Google Scholar 

  6. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 93(9):1–17. https://doi.org/10.1007/S13201-019-0927-7

  7. Zoroufchi Benis K, Soltan J, McPhedran KN (2023) Assessment of agricultural waste products for cost-effective and eco-friendly treatment of arsenic contaminated waters. Proc Can Soc Civ Eng Annu Conf 2021:19–30. https://doi.org/10.1007/978-981-19-1061-6_3/FIGURES/4

    Article  Google Scholar 

  8. Ebrahimi R, Maleki A, Shahmoradi B, Daraei H, Mahvi AH, Barati AH, Eslami A (2013) Elimination of arsenic contamination from water using chemically modified wheat straw. Desalin Water Treat 51:2306–2316. https://doi.org/10.1080/19443994.2012.734675

    Article  CAS  Google Scholar 

  9. Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948. https://doi.org/10.1016/J.BIORTECH.2007.06.011

    Article  CAS  Google Scholar 

  10. Zoroufchi Benis K, Damuchali AM, Soltan J, McPhedran KN (2020) Treatment of aqueous arsenic—a review of biochar modification methods. Sci Total Environ 739:139750. https://doi.org/10.1016/j.scitotenv.2020.139750

    Article  CAS  Google Scholar 

  11. Weber K, Quicker P (2018) Properties of biochar. Fuel. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  Google Scholar 

  12. Kumar A, Singh E, Khapre A, Bordoloi N, Kumar S (2020) Sorption of volatile organic compounds on non-activated biochar. Bioresour Technol 297:122469. https://doi.org/10.1016/J.BIORTECH.2019.122469

    Article  CAS  Google Scholar 

  13. Singh NB, Nagpal G, Agrawal S, Rachna K (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240. https://doi.org/10.1016/J.ETI.2018.05.006

  14. International Biochar Initiative (2022) International Biochar Institute [WWW Document]. https://biochar-international.org/

  15. Sizmur T, Fresno T, Akgül G, Frost H, Moreno-Jiménez E (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/J.BIORTECH.2017.07.082

    Article  CAS  Google Scholar 

  16. Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/J.BIORTECH.2014.01.120

    Article  CAS  Google Scholar 

  17. Zoroufchi Benis K, Minaei S, Soltan J, McPhedran KN (2022) Adsorption of lincomycin on microwave activated biochar: batch and dynamic adsorption. Chem Eng Res Des 187:140–150. https://doi.org/10.1016/J.CHERD.2022.08.058

    Article  CAS  Google Scholar 

  18. Zoroufchi Benis K, Soltan J, McPhedran KN (2022) A novel method for fabrication of a binary oxide biochar composite for oxidative adsorption of arsenite: characterization, adsorption mechanism and mass transfer modeling. J Clean Prod 356:131832. https://doi.org/10.1016/j.jclepro.2022.131832

    Article  CAS  Google Scholar 

  19. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/J.CHEMOSPHERE.2013.10.071

    Article  CAS  Google Scholar 

  20. Fang Q, Ye S, Yang H, Yang K, Zhou J, Gao Y, Lin Q, Tan X, Yang Z (2021) Application of layered double hydroxide-biochar composites in wastewater treatment: recent trends, modification strategies, and outlook. J Hazard Mater 420:126569. https://doi.org/10.1016/J.JHAZMAT.2021.126569

    Article  CAS  Google Scholar 

  21. Qiu B, Shao Q, Shi J, Yang C, Chu H (2022) Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep Purif Technol 300:121925. https://doi.org/10.1016/j.seppur.2022.121925

    Article  CAS  Google Scholar 

  22. Tan XF, Zhu SS, Wang RP, Chen YD, Show PL, Zhang FF, Ho SH (2021) Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups. Chinese Chem Lett 32:2939–2946. https://doi.org/10.1016/J.CCLET.2021.04.059

    Article  CAS  Google Scholar 

  23. Zoroufchi Benis K, Soltan J, McPhedran KN (2021) Electrochemically modified adsorbents for treatment of aqueous arsenic: pore diffusion in modified biomass vs. biochar. Chem Eng J 423:130061. https://doi.org/10.1016/j.cej.2021.130061

  24. Sharifpour E, Khafri HZ, Ghaedi M, Asfaram A, Jannesar R (2018) Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization. Ultrason Sonochem 40:373–382. https://doi.org/10.1016/J.ULTSONCH.2017.07.030

    Article  CAS  Google Scholar 

  25. Tan X, Zhu S, Show PL, Qi H, Ho SH (2020) Sorption of ionized dyes on high-salinity microalgal residue derived biochar: electron acceptor-donor and metal-organic bridging mechanisms. J Hazard Mater 393:122435. https://doi.org/10.1016/J.JHAZMAT.2020.122435

    Article  CAS  Google Scholar 

  26. Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385. https://doi.org/10.1016/J.SCITOTENV.2016.10.204

    Article  CAS  Google Scholar 

  27. Zhang Q, Wang J, Lyu H, Zhao Q, Jiang L, Liu L (2019) Ball-milled biochar for galaxolide removal: sorption performance and governing mechanisms. Sci Total Environ 659:1537–1545. https://doi.org/10.1016/J.SCITOTENV.2019.01.005

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy. https://doi.org/10.1016/j.energy.2019.01.035

    Article  Google Scholar 

  29. Bouchelta C, Medjram MS, Bertrand O, Bellat JP (2008) Preparation and characterization of activated carbon from date stones by physical activation with steam. J Anal Appl Pyrolysis 82:70–77. https://doi.org/10.1016/J.JAAP.2007.12.009

    Article  CAS  Google Scholar 

  30. Carrott PJM, Suhas, Carrott, MMLR, Guerrero CI, Delgado LA (2008) Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. J Anal Appl Pyrolysis 82:264–271. https://doi.org/10.1016/J.JAAP.2008.04.004

  31. Suliman W, Harsh JB, Abu-Lail NI, Fortuna A-M, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147. https://doi.org/10.1016/J.SCITOTENV.2016.09.025

    Article  CAS  Google Scholar 

  32. Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/J.RSER.2015.02.051

    Article  CAS  Google Scholar 

  33. Zoroufchi Benis K, Shakouri M, McPhedran K, Soltan J (2020) Enhanced arsenate removal by Fe-impregnated canola straw: assessment of XANES solid-phase speciation, impacts of solution properties, sorption mechanisms, and evolutionary polynomial regression (EPR) models. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-11140-0

    Article  Google Scholar 

  34. Danish A, Ali Mosaberpanah M, Usama Salim M, Ahmad N, Ahmad F, Ahmad A (2021) Reusing biochar as a filler or cement replacement material in cementitious composites: a review. Constr Build Mater 300:124295. https://doi.org/10.1016/J.CONBUILDMAT.2021.124295

    Article  CAS  Google Scholar 

  35. Fu P, Hu S, Xiang J, Sun L, Su S, Wang J (2012) Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J Anal Appl Pyrolysis 98:177–183. https://doi.org/10.1016/J.JAAP.2012.08.005

    Article  CAS  Google Scholar 

  36. Hassan M, Liu Y, Naidu R, Parikh SJ, Du J, Qi F, Willett IR (2020) Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ 744:140714. https://doi.org/10.1016/J.SCITOTENV.2020.140714

    Article  CAS  Google Scholar 

  37. Huang J (2010) Molecular sieving effect of a novel hyper-cross-linked resin. Chem Eng J 165:265–272. https://doi.org/10.1016/J.CEJ.2010.09.028

    Article  CAS  Google Scholar 

  38. Praveen S, Jegan J, Bhagavathi Pushpa T, Gokulan R, Bulgariu L (2022) Biochar for removal of dyes in contaminated water: an overview. Biochar 4:1–16. https://doi.org/10.1007/S42773-022-00131-8/FIGURES/5

    Article  Google Scholar 

  39. Shang J, Pi J, Zong M, Wang Y, Li W, Liao Q (2016) Chromium removal using magnetic biochar derived from herb-residue. J Taiwan Inst Chem Eng 68:289–294. https://doi.org/10.1016/J.JTICE.2016.09.012

    Article  CAS  Google Scholar 

  40. Pandit AB, Kumar JK (2015) Clean water for developing countries. 6:217–246 https://doi.org/10.1146/annurev-chembioeng-061114-123432

  41. Dai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12–27. https://doi.org/10.1016/j.chemosphere.2019.01.161

    Article  CAS  Google Scholar 

  42. Kamali M, Appels L, Kwon EE, Aminabhavi TM, Dewil R (2021) Biochar in water and wastewater treatment—a sustainability assessment. Chem Eng J 420:129946. https://doi.org/10.1016/J.CEJ.2021.129946

    Article  CAS  Google Scholar 

  43. Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (Char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40:7757–7763. https://doi.org/10.1021/ES061307M/SUPPL_FILE/ES061307MSI20060918_110643.PDF

    Article  CAS  Google Scholar 

  44. Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195. https://doi.org/10.1021/ES1014423/SUPPL_FILE/ES1014423_SI_001.PDF

    Article  CAS  Google Scholar 

  45. Yang K, Yang J, Jiang Y, Wu W, Lin D (2016) Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environ Pollut 210:57–64. https://doi.org/10.1016/J.ENVPOL.2015.12.004

    Article  CAS  Google Scholar 

  46. Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.03.072

    Article  Google Scholar 

  47. Liu H, Wei Y, Luo J, Li T, Wang D, Luo S, Crittenden JC (2019) 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chem Eng J 368:639–648. https://doi.org/10.1016/J.CEJ.2019.03.007

    Article  CAS  Google Scholar 

  48. Jang HM, Yoo S, Choi Y-K, Park S, Kan E (2018) Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour Technol 259:24–31. https://doi.org/10.1016/J.BIORTECH.2018.03.013

    Article  CAS  Google Scholar 

  49. Wang D, Mukome FND, Yan D, Wang H, Scow KM, Parikh SJ (2015) Phenylurea herbicide sorption to biochars and agricultural soil. 50:544–551 https://doi.org/10.1080/03601234.2015.1028830. https://doi.org/10.1080/03601234.2015.1028830

  50. Chen J, Zhang D, Zhang H, Ghosh S, Pan B (2017) Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci Total Environ 579:598–605. https://doi.org/10.1016/J.SCITOTENV.2016.11.052

    Article  CAS  Google Scholar 

  51. Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/J.BIORTECH.2012.05.042

    Article  CAS  Google Scholar 

  52. Chen X, Xia X, Wang X, Qiao J, Chen H (2011) A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere 83:1313–1319. https://doi.org/10.1016/J.CHEMOSPHERE.2011.04.018

    Article  CAS  Google Scholar 

  53. Sun K, Jin J, Keiluweit M, Kleber M, Wang Z, Pan Z, Xing B (2012) Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour Technol 118:120–127. https://doi.org/10.1016/J.BIORTECH.2012.05.008

    Article  CAS  Google Scholar 

  54. Luo Z, Yao B, Yang X, Wang L, Xu Z, Yan X, Tian L, Zhou H, Zhou Y (2022) Novel insights into the adsorption of organic contaminants by biochar: a review. Chemosphere 287:132113. https://doi.org/10.1016/j.chemosphere.2021.132113

    Article  CAS  Google Scholar 

  55. Zhang A, Li X, Xing J, Xu G (2020) Adsorption of potentially toxic elements in water by modified biochar: a review. J Environ Chem Eng 8:104196. https://doi.org/10.1016/j.jece.2020.104196

    Article  CAS  Google Scholar 

  56. Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46. https://doi.org/10.1016/j.cej.2013.09.074

    Article  CAS  Google Scholar 

  57. Krasucka P, Pan B, Sik Ok Y, Mohan D, Sarkar B, Oleszczuk P (2021) Engineered biochar—a sustainable solution for the removal of antibiotics from water. Chem Eng J 405:126926. https://doi.org/10.1016/J.CEJ.2020.126926

    Article  CAS  Google Scholar 

  58. Patel AK, Katiyar R, Chen CW, Singhania RR, Awasthi MK, Bhatia S, Bhaskar T, Dong CD (2022) Antibiotic bioremediation by new generation biochar: recent updates. Bioresour Technol 358:127384. https://doi.org/10.1016/J.BIORTECH.2022.127384

    Article  CAS  Google Scholar 

  59. Sophia AC, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1–17. https://doi.org/10.1016/J.ECOENV.2017.12.026

  60. Palansooriya KN, Yang Y, Tsang YF, Sarkar B, Hou D, Cao X, Meers E, Rinklebe J, Kim KH, Ok YS (2019) Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: a review. Crit Rev Environ Sci Technol 50:549–611. https://doi.org/10.1080/10643389.2019.1629803

    Article  CAS  Google Scholar 

  61. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

    Article  CAS  Google Scholar 

  62. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrolysis 155:105081. https://doi.org/10.1016/j.jaap.2021.105081

    Article  CAS  Google Scholar 

  63. Roy K, Kar S, Das RN (2015) Background of QSAR and historical developments. Underst. Basics QSAR Appl Pharm Sci Risk Assess 1–46. https://doi.org/10.1016/B978-0-12-801505-6.00001-6

  64. Keswani M, Han Z (2015) Post-CMP cleaning. Dev Surf Contam Clean 145–183. https://doi.org/10.1016/B978-0-323-29961-9.00004-1

  65. Qiu Y, Cheng H, Xu C, Sheng GD (2008) Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res 42:567–574. https://doi.org/10.1016/J.WATRES.2007.07.051

    Article  CAS  Google Scholar 

  66. Hsu NH, Wang SL, Lin YC, Sheng GD, Lee JF (2009) Reduction of Cr(VI) by crop-residue-derived black carbon. Environ Sci Technol 43:8801–8806. https://doi.org/10.1021/ES901872X/SUPPL_FILE/ES901872X_SI_001.PDF

    Article  CAS  Google Scholar 

  67. Zhang C, Shan B, Tang W, Zhu Y (2017) Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour Technol 238:352–360. https://doi.org/10.1016/J.BIORTECH.2017.04.051

    Article  CAS  Google Scholar 

  68. Zhang X, Gao B, Zheng Y, Hu X, Creamer AE, Annable MD, Li Y (2017) Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms. Bioresour Technol 245:606–614. https://doi.org/10.1016/J.BIORTECH.2017.09.025

    Article  CAS  Google Scholar 

  69. Zoroufchi Benis K, McPhedran KN, Soltan J (2022) Selenium removal from water using adsorbents: a critical review. J Hazard Mater 424:127603. https://doi.org/10.1016/J.JHAZMAT.2021.127603

    Article  CAS  Google Scholar 

  70. Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41. https://doi.org/10.1016/J.ENVPOL.2017.09.051

    Article  CAS  Google Scholar 

  71. Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73. https://doi.org/10.1016/J.JCIS.2007.01.020

    Article  CAS  Google Scholar 

  72. Harvey OR, Herbert BE, Rhue RD, Kuo LJ (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45:5550–5556. https://doi.org/10.1021/ES104401H/SUPPL_FILE/ES104401H_SI_001.PDF

    Article  CAS  Google Scholar 

  73. Cui X, Fang S, Yao Y, Li T, Ni Q, Yang X, He Z (2016) Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ 562:517–525. https://doi.org/10.1016/J.SCITOTENV.2016.03.248

    Article  CAS  Google Scholar 

  74. Vithanage M, Rajapaksha AU, Ahmad M, Uchimiya M, Dou X, Alessi DS, Ok YS (2015) Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. J Environ Manage 151:443–449. https://doi.org/10.1016/J.JENVMAN.2014.11.005

    Article  CAS  Google Scholar 

  75. Tong XJ, Li JY, Yuan JH, Xu RK (2011) Adsorption of Cu(II) by biochars generated from three crop straws. Chem Eng J 172:828–834. https://doi.org/10.1016/J.CEJ.2011.06.069

    Article  CAS  Google Scholar 

  76. Yang HI, Lou K, Rajapaksha AU, Ok YS, Anyia AO, Chang SX (2018) Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environ Sci Pollut Res 25:25638–25647. https://doi.org/10.1007/S11356-017-8551-2/TABLES/4

    Article  CAS  Google Scholar 

  77. Liang M, Lu L, He H, Li J, Zhu Z, Zhu Y (2021) Applications of biochar and modified biochar in heavy metal contaminated soil: a descriptive review. Sustain 13:14041. https://doi.org/10.3390/SU132414041

  78. Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/ES803092K/SUPPL_FILE/ES803092K_SI_001.PDF

    Article  CAS  Google Scholar 

  79. Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368. https://doi.org/10.1007/S11356-012-0873-5/TABLES/4

    Article  CAS  Google Scholar 

  80. Jung KW, Hwang MJ, Ahn KH, Ok YS (2015) Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. Int J Environ Sci Technol 12:3363–3372. https://doi.org/10.1007/S13762-015-0766-5/TABLES/5

    Article  CAS  Google Scholar 

  81. Hopkins D, Hawboldt K (2020) Biochar for the removal of metals from solution: a review of lignocellulosic and novel marine feedstocks. J Environ Chem Eng 8:103975. https://doi.org/10.1016/J.JECE.2020.103975

    Article  CAS  Google Scholar 

  82. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  CAS  Google Scholar 

  83. Lau AYT, Tsang DCW, Graham NJD, Ok YS, Yang X, Li X, dong, (2017) Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere 169:89–98. https://doi.org/10.1016/J.CHEMOSPHERE.2016.11.048

    Article  CAS  Google Scholar 

  84. Mohanty SK, Boehm AB (2015) Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter. Water Res 85:208–215. https://doi.org/10.1016/J.WATRES.2015.08.026

    Article  CAS  Google Scholar 

  85. Nabiul Afrooz ARM, Boehm AB (2017) Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecol Eng 102:320–330. https://doi.org/10.1016/J.ECOLENG.2017.02.053

    Article  Google Scholar 

  86. Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB, Fleming KG, Im W (2014) E. coli outer membrane and interactions with OmpLA. Biophys J 106:2493–2502. https://doi.org/10.1016/j.bpj.2014.04.024

    Article  CAS  Google Scholar 

  87. Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164. https://doi.org/10.1016/S0167-7012(00)00224-4

    Article  CAS  Google Scholar 

  88. Organization WH (2016) Ambient air pollution: a global assessment of exposure and burden of disease

    Google Scholar 

  89. Zhao Z, Wang B, Theng BKG, Lee X, Zhang X, Chen M, Xu P (2022) Removal performance, mechanisms, and influencing factors of biochar for air pollutants: a critical review. Biochar 41(4):1–24. https://doi.org/10.1007/S42773-022-00156-Z

  90. Gwenzi W, Chaukura N, Wenga T, Mtisi M (2021) Biochars as media for air pollution control systems: contaminant removal, applications and future research directions. Sci Total Environ 753:142249. https://doi.org/10.1016/J.SCITOTENV.2020.142249

    Article  CAS  Google Scholar 

  91. Bhandari PN, Kumar A, Huhnke RL (2014) Simultaneous removal of toluene (model tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts. Energy Fuels 28:1918–1925. https://doi.org/10.1021/EF4016872

    Article  CAS  Google Scholar 

  92. Das J, Rene ER, Dupont C, Dufourny A, Blin J, van Hullebusch ED (2019) Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour Technol 273:581–591. https://doi.org/10.1016/J.BIORTECH.2018.11.052

    Article  CAS  Google Scholar 

  93. Li G, Shen B, Li Y, Zhao B, Wang F, He C, Wang Y, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169. https://doi.org/10.1016/J.JHAZMAT.2015.05.031

    Article  CAS  Google Scholar 

  94. Liu HB, Yang B, Xue ND (2016) Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. J Hazard Mater 318:425–432. https://doi.org/10.1016/J.JHAZMAT.2016.07.026

    Article  CAS  Google Scholar 

  95. Sánchez-Monedero MA, Sánchez-García M, Alburquerque JA, Cayuela ML (2019) Biochar reduces volatile organic compounds generated during chicken manure composting. Bioresour Technol 288:121584. https://doi.org/10.1016/J.BIORTECH.2019.121584

    Article  Google Scholar 

  96. Behnami A, Zoroufchi Benis K, Shakerkhatibi M, Derafshi S, Chavoshbashi MM (2019) A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant. Stoch Environ Res Risk Assess 33:13–29. https://doi.org/10.1007/s00477-018-1623-0

    Article  Google Scholar 

  97. Khan A, Szulejko JE, Samaddar P, Kim KH, Liu B, Maitlo HA, Yang X, Ok YS (2019) The potential of biochar as sorptive media for removal of hazardous benzene in air. Chem Eng J 361:1576–1585. https://doi.org/10.1016/J.CEJ.2018.10.193

    Article  CAS  Google Scholar 

  98. Pongkua W, Dolphen R, Thiravetyan P (2018) Effect of functional groups of biochars and their ash content on gaseous methyl tert-butyl ether removal. Colloids Surfaces A Physicochem Eng Asp 558:531–537. https://doi.org/10.1016/J.COLSURFA.2018.09.018

    Article  CAS  Google Scholar 

  99. Hwang O, Lee SR, Cho S, Ro KS, Spiehs M, Woodbury B, Silva PJ, Han DW, Choi H, Kim KY, Jung MW (2018) Efficacy of Different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustain Chem Eng 6:14239–14247. https://doi.org/10.1021/ACSSUSCHEMENG.8B02881/ASSET/IMAGES/LARGE/SC-2018-02881R_0003.JPEG

    Article  CAS  Google Scholar 

  100. Dissanayake PD, You S, Igalavithana AD, Xia Y, Bhatnagar A, Gupta S, Kua HW, Kim S, Kwon JH, Tsang DCW, Ok YS (2020) Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sustain Energy Rev 119:109582. https://doi.org/10.1016/J.RSER.2019.109582

    Article  CAS  Google Scholar 

  101. Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S, Xiong Q, Huang H (2020) Nitrogen containing functional groups of biochar: an overview. Bioresour Technol 298:122286. https://doi.org/10.1016/J.BIORTECH.2019.122286

    Article  CAS  Google Scholar 

  102. Nguyen MV, Lee BK (2016) A novel removal of CO2 using nitrogen doped biochar beads as a green adsorbent. Process Saf Environ Prot 104:490–498. https://doi.org/10.1016/J.PSEP.2016.04.007

    Article  CAS  Google Scholar 

  103. Zhang X, Zhang S, Yang H, Feng Y, Chen Y, Wang X, Chen H (2014) Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: characterization and adsorption of CO2. Chem Eng J 257:20–27. https://doi.org/10.1016/J.CEJ.2014.07.024

    Article  Google Scholar 

  104. Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour Technol 133:495–499. https://doi.org/10.1016/J.BIORTECH.2013.01.114

    Article  CAS  Google Scholar 

  105. Shang G, Shen G, Wang T, Chen Q (2012) Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar. 62:873–879. https://doi.org/10.1080/10962247.2012.686441

  106. Braghiroli FL, Bouafif H, Koubaa A (2019) Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues. Ind Crops Prod 138:111456. https://doi.org/10.1016/J.INDCROP.2019.06.019

    Article  CAS  Google Scholar 

  107. Klasson KT, Boihem LL, Uchimiya M, Lima IM (2014) Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas. Fuel Process Technol 123:27–33. https://doi.org/10.1016/J.FUPROC.2014.01.034

    Article  CAS  Google Scholar 

  108. Lee SJ, Seo YC, Jurng J, Hong JH, Park JW, Hyun JE, Lee TG (2004) Mercury emissions from selected stationary combustion sources in Korea. Sci Total Environ 325:155–161. https://doi.org/10.1016/J.SCITOTENV.2003.12.002

    Article  CAS  Google Scholar 

  109. Liu Y, Wang Q (2014) Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environ Sci Technol 48:12181–12189. https://doi.org/10.1021/ES501966H/SUPPL_FILE/ES501966H_SI_001.PDF

    Article  CAS  Google Scholar 

  110. Liu Z, Yang W, Xu W, Liu Y (2018) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chem Eng J 339:468–478. https://doi.org/10.1016/J.CEJ.2018.01.148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Soltan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zoroufchi Benis, K., Soltan, J., McPhedran, K.N. (2023). Biochar: A Potent Adsorbent. In: Nadda, A.K. (eds) Biochar and its Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-5239-7_3

Download citation

Publish with us

Policies and ethics