Skip to main content

Environmental Treatment Technologies: Adsorption

  • Reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

In the field of environmental engineering, adsorption plays an integral role among methods to treat contaminants because of its robustness in handling a range of pollutants as well as its simplicity in operation. This chapter provides the basic principles underlying adsorption technology and the effect of several aspects, specifically pH, adsorbent dosage, and contact time in optimizing the adsorption capacity of an adsorbent (the material that adsorbs) towards the adsorbate (that which is adsorbed). The methods of modeling the adsorption data, with varying degrees of freedom, for isotherm, kinetic, and thermodynamic as well as column studies are presented with illustrative results, along with their significance in designing a fixed-bed adsorption unit. A synoptic understanding of the most commonly used adsorbents (both conventional and nonconventional), their analytic characterization as well as applicability with regards to various wastewater is also provided. Finally, a short outline of regeneration and desorption methods as well as operational and maintenance considerations is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahalya N, Kanamadi RD, Ramachandra TV (2005) Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron J Biotechnol 8:258–264

    Article  CAS  Google Scholar 

  • Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis and related subjects, vol 21. Academic, New York, pp 1–49

    Google Scholar 

  • Ahmedna M (1998) Granular activated carbon from agricultural by-products: carbon properties and their relationship to sugar decolorization potential. PhD thesis, Graduate Faculty of the Louisiana State University

    Google Scholar 

  • Ahmedna M, Marshall WE, Rao RM (2000) Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour Technol 71:113–123

    Article  CAS  Google Scholar 

  • Akal F (2005) Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant. J Environ Manage 74:239–244

    Article  CAS  Google Scholar 

  • Aksu Z, Acikel U, Kabasakal E, Tezer S (2002) Equilibrium modeling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res 36:3063–3073

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  • Allen SJ, Brown P, McKay G, Flynn O (1992) An evaluation of single resistance transfer models in the sorption of metal ions by peat. J Chem Technol Biotechnol 54:271–276

    Article  CAS  Google Scholar 

  • Anselmo AM, Novais JM (1992) Biological treatment of phenolic wastes: comparison between free and immobilized cell systems. Biotechnol Lett 14(3):239–244

    Article  CAS  Google Scholar 

  • Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2005) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater B17:234–240

    Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill Science/Engineering/Math, New York

    Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  • Bautista LF, Martinez M, Aracil J (2003) Adsorption of α-amylase in a fixed bed: operating efficiency and kinetic modeling. AIChE J 49(10):2631–2641

    Article  CAS  Google Scholar 

  • Belkevich PI, Gayduk KA, Christova LR (1976) Role of peat in decontamination of environment. In: Proceedings of the 5th international peat congress, Poznan, vol 1, pp 328–348

    Google Scholar 

  • Bohart GS, Adams EQ (1920) Some aspects of behavior of charcoal with respect to chlorine. J Chem Soc 42:523–529 (as reference in the Taty-Costodes et al. 2005)

    Google Scholar 

  • Boyd SA, Morland MM, Chiou CT (1988) Sorption characteristics of organic compounds on hexadecyl trimethyl ammonium-semectite. Soil Sci Soc Am J 52:652–665

    Article  CAS  Google Scholar 

  • Brigatti M, Corrodini F, Franchini G et al (1995) Interaction between montmorillonite and pollutants from industrial wastewaters: exchange of Zn2+ and Pb2+ from aqueous solutions. Appl Clay Sci 9:383–395

    Article  CAS  Google Scholar 

  • Brucher J, Bergstrom L (1997) Temperature dependence of linuron sorption to three different agricultural soils. J Environ Qual 26(5):1327–1335

    Article  CAS  Google Scholar 

  • Cardoso JB, Clarke OM (1985) Use of Alabama peat as an adsorbent for heavy metals. Mineral Resources Institute, School of Mines and Energy Development (as reference in Arun Subramani)

    Google Scholar 

  • Catena GC, Bright FV (1989) Thermodynamic study on the effects of beta-cyclodextrin inclusion with anilinonaphthalenesulfonates. Anal Chem 61:905–909

    Article  CAS  Google Scholar 

  • Catherine T (1993) PhD thesis submitted to Office of graduate studies of Texas A&M University

    Google Scholar 

  • Cheremisinoff PN (1990) Biological treatment of hazardous wastes, sludges and wastewater. Pollut Eng 22(5):87–94

    CAS  Google Scholar 

  • Chiou CT, Shoup TD (1985) Soil sorption of organic vapors and effect of humidity on sorptive mechanism and capacity. Environ Sci Technol 19:1196

    Article  CAS  Google Scholar 

  • Colin F (1998) Bioremediation of phenols and chlorophenols with soybean peroxidase (SBP) and crude soyabean seed hulls: modeling and experimental studies. MS thesis submitted to The University of Western Ontario, London

    Google Scholar 

  • Cooney DO (1999) Adsorption design for wastewater treatment. Lewis Publishers, CRC Press LLC, Boca Raton

    Google Scholar 

  • Cordova-Rosa SM, Dams RI et al (2009) Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant. J Hazard Mater 164:61–66

    Article  CAS  Google Scholar 

  • Dabrowski A (2001) Adsorption – from theory to practice. Adv Colloid Interface Sci 93(1–3):135–224

    Article  CAS  Google Scholar 

  • Damjanović L, Raki V, Rac V, StoÅ¡ić D, Auroux A (2010) The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Mater 184:477–484

    Article  CAS  Google Scholar 

  • D’Aquino M, Korol S, Santini P, Moretton J (1988) Biodegradation of phenolic compounds. I. Improved degradation of phenol and benzoate by indigenous strains of acinetobacter and pseudomonas. Rev Lat-amer Microbiol 30:283–288

    Google Scholar 

  • Das A (2000) PhD thesis submitted to the Centre for Energy Studies, IIT Delhi

    Google Scholar 

  • Das CP, Patnaik LN (2005) Removal of phenol by industrial solid waste. Pract Period Hazard Toxic Radioact Waste Manage 9(2):135–140

    Google Scholar 

  • Dursun AY, Kalayci CS (2005) Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. J Hazard Mater 123(1–3):151–157

    Article  CAS  Google Scholar 

  • Ehrhardt HM, Rehm HJ (1989) Semi continuous and continuous degradation of phenol by Pseudomonas putida P8 adsorbed on activated carbon. Appl Microbiol Biotechnol 30:312–317

    Article  CAS  Google Scholar 

  • Erik A, Jensen KB, Gundersen TA (1989) Substrate interaction during aerobic biodegradation of benzene. Appl Environ Microbiol 55(12):3221

    Google Scholar 

  • Fang HHP, Chian ESP (1975) Reverse osmosis separation of polar organic compounds in aqueous solution. Env Sci Technol 10(4):364–369

    Article  Google Scholar 

  • Figueiredo SA, Boaventura RA, Loureiro JM (2000) Color removal with natural adsorbents: modeling, simulation and experimental. Sep Purif Technol 20:129–141

    Article  CAS  Google Scholar 

  • Fogler HS (1998) Elements of chemical reaction engineering. Prentice-Hall

    Google Scholar 

  • Fredd CN, Fogler HS (1998) Influence of transport and reaction on wormhole formation in porous media. AIChE J 44:1933–1949

    Article  CAS  Google Scholar 

  • Ghiaci MA, Abbaspur A, Kiaa R, Seyedeyn-Azad F (2004) Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Sep Purif Technol 40:217–229

    Article  CAS  Google Scholar 

  • Gutierrez M, Fuents HA (1996) A mechanistic modeling of montmorillonite contamination by cesium sorption. Appl Clay Sci 11:11–24

    Article  CAS  Google Scholar 

  • Han JS (1999) Stormwater filtration of toxic heavy metal ions using lignocellulosic materials; selection process, fiberization, chemical modification, and mat formation. Extended Abstract on 2nd inter-region conference environment-water, Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Hickman GT, Novak JT (1984) Acclimation of activated sludge to pentachlorophenol. J Water Pollut Control Fed 56(4):364–369

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (2004) Sorption of copper (II) from aqueous solution by peat. Water Air Soil Pollut 158:77–97

    Article  CAS  Google Scholar 

  • Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by bio-sorbents: review. Sep Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  • Imamura S (1999) Catalytic and non-catalytic wet oxidation. Ind Eng Chem Res 38:1743–1753

    Article  CAS  Google Scholar 

  • Ishaque M, Bisaillon JG, Beaudet R, Sylvestre M (1985) Degradation of phenolic compunds by microorganisms indigenous to swine waste. Agric Wastes 13:229–235

    Article  Google Scholar 

  • Johnson RM, Sims JT (1993) Influence of surface and subsoil properties on herbigide sorption by Atlantic coastal plain soils. Soil Sci 155(5):339

    Article  CAS  Google Scholar 

  • Juang R, Shiau J (1999) Adsorption isotherms of phenols from water onto macroreticular resins. J Hazard Mater B70:171–183

    Article  Google Scholar 

  • Katayana-Hirayama K, Tobita S, Hirayama K (1991) Metabolic pathway of phenol in Rhodotorula Rubra. J Gen Appl Microbiol 37:379–388

    Article  Google Scholar 

  • Kawai T, Tsutsumi K (1995) Adsorption characteristics of surfactants and phenol on modified zeolites from their aqueous solutions. Colloid Polym Sci 273(8):787–792

    Article  CAS  Google Scholar 

  • Kennes C, Lema JM (1994) Degradation of major compounds of creosotes (PAH and phenols) by Phanerochoete chrysosporium. Biotechnol Lett 16(7):759–764

    Article  Google Scholar 

  • Khalid M, Joly G, Renaud A, Magnoux P (2004) Removal of phenol from water by adsorption using zeolites. Ind Eng Chem Res 43(17):5275

    Google Scholar 

  • Khelifa A, Benchehida L, Derriche Z (2004) Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat. J Colloid Interface Sci 278:9–17

    Article  CAS  Google Scholar 

  • Kim JMY, Park JK, Edil TB (1997) Sorption of organic compounds in the aqueous phase onto tire rubber. J Environ Eng 123(9):827–835

    Article  CAS  Google Scholar 

  • Kobeissy FH, Sadasivan S, Liu J, Gold MS, Wang KK (2008) Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics 5:293–314

    Article  CAS  Google Scholar 

  • Koumanova B, Peeva-Antova P (2002) Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite. J Hazard Mater 90(3):229–234

    Article  CAS  Google Scholar 

  • Kumar NS, Suguna M, Subbaiah MV, Reddy AS, Kumar NP, Krishnaiah A (2010) Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent. Ind Eng Chem Res 49(19):9238–9247

    Article  CAS  Google Scholar 

  • Leslie ME (1974) Peat. New medium for treating dye house effluent. Am Dyest Rep 63(8):15–18

    CAS  Google Scholar 

  • Lo B, Mak R, Lee S (1997) Modified clays for waste containment and pollutant attenuation. J Environ Eng 123:25–32

    Article  CAS  Google Scholar 

  • Luchesi A, Maschio G (1983) Semi-active carbon and aromatics produced from the pyrolysis of scrap tyres. Conser Recycl 6(3):85–90

    Article  Google Scholar 

  • Mahajan SP (1994) Pollution control in process industries. TaTa McGraw Hill, New Delhi, pp 115–125

    Google Scholar 

  • Maiti A, DasGupta S, Basu JK, De S (2007) Adsorption of arsenite using natural laterite as adsorbent. Sep Purif Technol 55(3):350–359

    Article  CAS  Google Scholar 

  • Matatov-Meytal YI, Sheintuch M (1998) Catalytic abatement of water pollutants. Ind Eng Chem Res 37(2):309–326

    Article  CAS  Google Scholar 

  • McCloskey WB, Bayer DE (1987) Thermodynamics of fluridone adsorption and desorption on three California soils. Soil Sci Soc Am J 51(3):605–612

    Article  CAS  Google Scholar 

  • McKay G, Allen SJ (1984) Pore diffusion model for dye adsorption onto peat in batch adsorbents. Can J Chem Eng 62:340–345

    Article  CAS  Google Scholar 

  • McKay G, Ho YS (1999) Pseudo-second-order model for sorption process. Process Biochem 34:451–465

    Article  Google Scholar 

  • McKay G, Allen SJ, McConvey IF, Otterburn MS (1981) Transport processes in the sorption of colored ions by peat particles. J Colloid Interface Sci 80(2):323–339

    Article  CAS  Google Scholar 

  • Metcalf and Eddy (2005) Wastewater engineering treatment and reuse. TATA McGraw-Hill, New Delhi

    Google Scholar 

  • Nawar SS, Doma HS (1989) Removal of dyes from effluents using low-cost agricultural by products. Sci Total Environ 79:271

    Article  CAS  Google Scholar 

  • Oladoja NO, Aboluwoye CO, Oladimeji YB, Ashogbon AO, Otemuyiwa IO (2008) Studies on castor seed shell as a sorbent in basic dye contaminated wastewater remediation. Desalination 227:190–203

    Article  CAS  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63(6):1024–1024

    Article  CAS  Google Scholar 

  • Rengaraj S, Sivabalan R, Arabindoo B, Murugesan V (2000) Adsorption kinetics of o-cresol on activated carbon from palm seed coat. Indian J Chem Technol 7(3):127–131

    CAS  Google Scholar 

  • Rengaraj S, Moon SH, Sivabalan R, Arabindoo B, Murugesan V (2002) Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manag 22(5):543–548

    Article  CAS  Google Scholar 

  • Ross WR (1989) Anaerobic treatment of industrial effluents in South Africa. Water SA 15(4):231–246

    CAS  Google Scholar 

  • Sameer A, Fawzi B, Leena A (2003) Adsorption of phenol using different types of activated bentonites. Sep Purif Technol 33(1):1–10

    Google Scholar 

  • Sing KSW (1989) The use of physicosoprtion for the characterization of micro-porous carbon. Carbon 27(1):5–11

    Article  Google Scholar 

  • Singh BK, Mishra NM, Rawat NS (1994) Sorption characteristics of phenols on fly ash and impregnated fly ash. Indian J Environ Health 36:1–7

    CAS  Google Scholar 

  • Sismanoglu T, Pura S (2001) Adsorption of aqueous nitrophenols on clinoptilolite. Colloids Surf A Physicochem Eng Asp 180(1):1–6

    Article  CAS  Google Scholar 

  • Srivastava SK, Renu Tyagi, Naresh P, Dinesh M (1997) Process development for removal of substituted phenol by carbonaceous adsorbent obtained from fertilizer waste. J Environ Eng ASCE 123(9):842–851

    Google Scholar 

  • Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf A Physicochem Eng Asp 272(1–2):89–104

    Article  CAS  Google Scholar 

  • Streat M, Patrick JW, Perez MJC (1995) Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons. Water Res 29:467–472

    Article  CAS  Google Scholar 

  • Tancredi N, Medero N, Möller F, Piriz J, Plada C, Cordero T (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J Colloid Interface Sci 279:357–363

    Article  CAS  Google Scholar 

  • Tanthapanichakoon W, Ariyadejwanichb P, Japthongb P, Nakagawac K, Mukaic SR, Tamonc H (2005) Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353

    Article  CAS  Google Scholar 

  • Taty-Costodes C, Fauduet H, Porte C, Ho Y-S (2005) Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column. J Hazard Mater B123:135–144

    Article  CAS  Google Scholar 

  • Tayim HA, Al-Yazouri AH (2005) Industrial wastewater treatment using local natural soil in Abu Dhabi, U.A.E. Am J Environ Sci 1(3):190–193

    Article  CAS  Google Scholar 

  • Tseng R-L, Feng-Chin W, Juang R-S (2003) Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41(3):487–495

    Article  CAS  Google Scholar 

  • Tsezos M, Bell JP (1989) Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res 23:561–568

    Article  CAS  Google Scholar 

  • Vasanth Kumar K, Porkodi K, Selvaganapathi A (2007) Constrain in solving Langmuire Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes Pigments 75:246–249

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater B133:304–308

    Article  CAS  Google Scholar 

  • Viraraghavan T, Kapoor A (1994) Adsorption of mercury from wastewater by bentonite. Appl Clay Sci 9:31–49

    Article  CAS  Google Scholar 

  • Wang T, Zhu RL, Ge F, Zhu JX, He HP, Chen WX (2010) Sorption of phenol and nitrobenzene in water by CTMAB/CPAM organo bentonites. Environ Sci 31(2):385–389

    Google Scholar 

  • Xue SW, Zhoub Y, Jiang Y, Suna C (2008) The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater 157:374–385

    Article  CAS  Google Scholar 

  • Yanic C, Tor L, Afsar H (1996) Optimum conditions for removal of phenol by reverse osmosis. Chim Acta Turc 24:67–70

    CAS  Google Scholar 

  • Yeom IT, Ghosh MM (1998) Mass transfer limitation in PAH-contaminated soil remediation. Water SciTechnol 37:111–118

    CAS  Google Scholar 

  • Zhu H (2002) Retention and movement of reactive chemicals in soils. LSU doctoral dissertations. 2498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyam Busetty .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Busetty, S. (2019). Environmental Treatment Technologies: Adsorption. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73645-7_37

Download citation

Publish with us

Policies and ethics