Skip to main content

Advertisement

Log in

Standing wave optimization of SMB using a hybrid simulated annealing and genetic algorithm (SAGA)

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this paper we draw on two stochastic optimization techniques, Simulated Annealing and Genetic Algorithm (SAGA), to create a hybrid to determine the optimal design of nonlinear Simulated Moving Bed (SMB) systems. A mathematical programming model based on the Standing Wave Design (SWD) offers a significant advantage in optimizing SMB systems. SAGA builds upon the strength of SA and GA to optimize the 16 variables of the mixed-integer nonlinear programming model for single- and multi-objective optimizations. The SAGA procedure is shown to be robust with computational time in minutes for single-objective optimization and in a few hours for a multi-objective optimization, which is comprised of more than one hundred points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biegler, L.T., Grossmann, I.E.: Retrospective on optimization. Comput. Chem. Eng. 28, 1169–1192 (2004)

    CAS  Google Scholar 

  • Broughton, D.B.: Production-scale adsorptive separations of liquid mixtures by simulated moving-bed technology. Sep. Sci. Prog. 66, 70 (1961S)

    Google Scholar 

  • Cauley, F.G., Xie, Y., Wang, N.-H.L.: Optimization of SMB systems with linear adsorption isotherms by the standing wave annealing technique. Ind. Eng. Chem. Res. 43, 7588–7599 (2004)

    Article  CAS  Google Scholar 

  • Cauley, F.G., Cauley, S.F., Lee, K.B., Xie, Y., Wang, N.-H.L.: Standing wave annealing technique: for the design and optimization of nonlinear simulated moving bed systems with significant mass-transfer effects. Ind. Eng. Chem. Res. 45, 8697–8712 (2006)

    Article  CAS  Google Scholar 

  • Cerny, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    Article  Google Scholar 

  • Chung, S.F., Wen, C.Y.: Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J. 14, 857 (1968)

    Article  CAS  Google Scholar 

  • Davis, L.: Genetic Algorithms and Simulated Annealing. Pitman, London (1987)

    Google Scholar 

  • Davis, L.: Hand Book of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  • Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, New York (2001)

    Google Scholar 

  • Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications of Biology, Control and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  • Lee, K.B., Chin, C.Y., Xie, Y., Cox, G., Wang, N.-H.L.: Standing wave design of a simulated moving bed under a pressure limit for enantioseparation of phenylpropanolamine. Ind. Eng. Chem. Res. 44, 3249–3267 (2005a)

    Article  CAS  Google Scholar 

  • Lee, K.B., Mun, S., Cauley, F.G., Cox, G., Wang, N.-H.L.: Optimal standing-wave design of nonlinear simulated moving bed systems for enantioseparation. Ind. Eng. Chem. Res. 45, 739–752 (2005b)

    Article  CAS  Google Scholar 

  • Ludemann-Hombourger, O., Bailly, M., Nicoud, R.M.: Design of a simulated moving bed: optimal particle size of the stationary phase. Sep. Sci. Technol. 35, 1285–1305 (2000)

    Article  CAS  Google Scholar 

  • Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Kluwer Academic, Norwell (2003)

    Google Scholar 

  • Ma, Z., Wang, N.-H.L.: Standing wave analysis of SMB chromatography: linear systems. AIChE J. 43, 2488–2508 (1997)

    Article  CAS  Google Scholar 

  • Mallmann, T., Burris, B.D., Ma, Z., Wang, N.-H.L.: Standing wave design of nonlinear SMB systems for fructose purification. AIChE J. 44, 2628–2646 (1998)

    Article  CAS  Google Scholar 

  • Mazzotti, M., Storti, G., Morbidelli, M.: Optimal operation of simulated moving bed units for nonlinear chromatographic separations. J. Chromatogr. A 769, 3–24 (1997)

    Article  CAS  Google Scholar 

  • Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, New York (2000)

    Google Scholar 

  • Mun, S., Xie, Y., Kim, J.-H., Wang, N.-H.L.: Optimal design of a size-exclusion tandem simulated moving bed process for insulin purification. Ind. Eng. Chem. Res. 42, 1977–1993 (2003)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Ching, C.B.: Counter-current and simulated counter-current adsorption separation processes. Chem. Eng. Sci. 44, 1011–1038 (1989)

    Article  CAS  Google Scholar 

  • Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures, and Improvements for Simulated Annealing. SIAM, Philadelphia (2002)

    Google Scholar 

  • Schulte, M., Strube, J.: Preparative enantioseparation by simulated moving bed chromatography. J. Chromatogr. A 906, 399–416 (2001)

    Article  CAS  Google Scholar 

  • Silva, V.M.T., Minceva, M., Rodrigues, A.E.: Novel analytical solution for a simulated moving bed in the presence of mass-transfer resistance. Ind. Eng. Chem. Res. 43, 4494–4502 (2004)

    Article  CAS  Google Scholar 

  • Wales, D.J., Scherega, H.A.: Chemistry: global optimization of clusters, crystals and biomolecules. Science 27, 1368–1372 (1999)

    Article  Google Scholar 

  • Wilson, E.J., Geankoplis, C.J.: Liquid mass transfer at very low Reynolds numbers in packed beds. Ind. Eng. Chem. Fundam. 5, 9 (1966)

    Article  CAS  Google Scholar 

  • Wu, D.-J., Xie, Y., Ma, Z., Wang, N.-H.L.: Design of simulated moving bed chromatography for amino acid separations. Ind. Eng. Chem. Res. 37, 4023–4035 (1998)

    Article  CAS  Google Scholar 

  • Xie, Y., Koo, Y.-M., Wang, N.-H.L.: Preparative chromatographic separation: simulated moving bed and modified chromatography methods. Biotechnol. Bioprocess. Eng. 6, 1 (2001)

    Article  Google Scholar 

  • Xie, Y., Mun, S.-Y., Kim, J.H., Wang, N.-H.L.: Standing wave design and experimental validation of a tandem simulated moving bed for insulin purification. Biotechnol. Prog. 18, 1332–1344 (2002)

    Article  CAS  Google Scholar 

  • Xie, Y., Hritzko, B., Chin, C.Y., Wang, N.-H.L.: Separation of FTC-ester enantiomers using a simulated moving bed. Ind. Eng. Chem. Res. 42, 4055–4067 (2003a)

    Article  CAS  Google Scholar 

  • Xie, Y., Farrenburg, C., Chin, C.Y., Mun, S., Wang, N.-H.L.: Design of SMB for a nonlinear amino acid system with mass-transfer effects. AIChE J. 49, 2850–2863 (2003b)

    Article  CAS  Google Scholar 

  • Zhang, Z., Hidajat, K., Ray, A.K., Morbidelli, M.: Multiobjective optimization of SMB and varicol process for chiral separation. AIChE J. 48, 2800–2816 (2002)

    Article  CAS  Google Scholar 

  • Zhang, Z., Mazzotti, M., Morbidelli, M.: Multiobjective optimization of simulated moving bed and varicol processes using a genetic algorithm. J. Chromatogr. A 989, 95–108 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fattaneh G. Cauley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cauley, F.G., Cauley, S.F. & Wang, NH.L. Standing wave optimization of SMB using a hybrid simulated annealing and genetic algorithm (SAGA). Adsorption 14, 665–678 (2008). https://doi.org/10.1007/s10450-008-9119-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-008-9119-8

Keywords

Navigation