Skip to main content
Log in

Modeling equilibrium and kinetics of metal uptake by algal biomass in continuous stirred and packed bed adsorbers

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Physical and chemical characterization of algae Gelidium particles shows a gel structure, with two major binding groups, carboxylic and hydroxyl groups, with an affinity constant distribution for protons, well described by a Quasi-Gaussian distribution suggested by Sips. A continuous model, considering a heterogeneous distribution of the carboxylic groups, determined by potentiometric titration experiments, was able to predict equilibrium data at different pH. The metal uptake capacity decreases with the solution pH, suggesting that competition exists between hydrogen ions, present in high concentrations for low pH values, and metal ions. For high ionic strengths, adsorption sites will be surrounded by counter ions and partially lose their charge, which weakens the contribution of the electrostatic binding and decreases the overall adsorption. A small influence of the temperature in the adsorption process was observed. Batch kinetic experiments were also performed, at different pH values, and results were well fitted by a mass transfer model, considering the intraparticle diffusion resistance given by the linear driving force model (LDF). Continuous stirred adsorber (CSTA) and packed bed column configurations were also tested for metal adsorption. The biosorbent regeneration was achieved by contacting it with strong acid (0.1 M HNO3). A mass transfer model was applied with success to describe the biosorption/desorption process in CSTA and packed bed column, considering the equilibrium given by the Langmuir equation/mass action law and film and intraparticle diffusion resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a p :

Specific area for thin plates particles

C b :

Metal concentration in the bulk (mg or mmol metal/l fluid)

\(C_{b_{0}}\) :

Initial metal concentration in the bulk (mg or mmol metal/l fluid)

C E :

Feed concentration (mg or mmol metal/l fluid)

C f :

Metal concentration in the film (mg or mmol metal/l fluid)

C final :

Metal concentration in the solution at the end of the saturation or elution process (mg or mmol metal/l fluid)

C CI :

Initial metal concentration in the solution (elution process) (mmol metal/l fluid)

C H :

Equilibrium concentration of proton in the fluid phase (mmol proton/l fluid)

C M :

Equilibrium concentration of metal in the fluid phase (mmol metal/l fluid)

C T :

Total (metal + acid) liquid concentration (mmol/l fluid)

\(C_{T_{0}}\) :

Initial total (metal + acid) liquid concentration (mmol/l fluid)

\(C_{T_{E}}\) :

Total feed (acid) liquid concentration (mmol/l fluid)

D ax :

Axial dispersion coefficient (cm2/s)

D h :

Homogeneous diffusion coefficient (cm2/s)

IS:

Ionic strength (M)

k f :

Film mass transfer coefficient (cm/s)

k p :

Mass transfer coefficient for intraparticle diffusion (cm/s)

K H :

Equilibrium proton constant (l fluid/mmol H)

K M :

Equilibrium metal constant (l fluid/mmol M)

K H ′:

Average value of the affinity constant distribution for the proton (l fluid/mmol H)

K M ′:

Average value of the affinity constant distribution for the metal (l fluid/mmol M)

K L :

Equilibrium constant of Langmuir (l fluid/mg M)

K M H :

Selectivity coefficient between ion M in the particle and ion H in solution

L :

Bed length (cm)

n :

Empirical dimensionless parameter

n M and n H :

Constants that reflect the overall non-ideality of metal and proton

N d :

Number of mass transfer units by intraparticle diffusion

N f :

Number of mass transfer units by film diffusion

p :

Represents the intrinsic heterogeneity of the biosorbent

Pe :

Axial Peclet number based on the bed length

Pe p :

Axial Peclet number based on the particle diameter (spherical) or width (thin plate)

pH SE :

pH of feed solution

q〉:

Average metal concentration in the solid phase (mg or mmol metal/g biomass)

q E :

Solid phase concentration in equilibrium with C E (mg or mmol metal/g biomass)

q H :

Equilibrium concentration of proton in the biomass (mmol metal/g biomass)

q L e q LF :

Maximum amount of metal per g of adsorbent (mg/l)

q M :

Equilibrium concentration of metal in the biomass (mg or mmol metal/g biomass)

\(q_{M_{0}}\) :

Metal concentration in the solid phase in equilibrium with \(C_{b_{o}}\) (mg or mmol metal/g biomass)

q * :

Solid phase concentration in equilibrium with C f (mg or mmol metal/g biomass)

q t :

Concentration of ion species in the sorbent at time t (mg metal g biosorbent−1)

Q max  :

Concentration of carboxylic groups or maximum capacity of biomass (mmol/g biomass)

r :

The dimensionless axial coordinate inside the particle

R :

Half of thickness of the thin plate (cm)

Sh :

Sherwood number

t :

Time (s)

t b :

Breakthrough time (s)

t st :

Stoichiometric time (s)

T :

Temperature (°C)

u i :

Interstitial fluid velocity (cm/s)

V :

Metal solution volume (l)

V r :

Volume of the adsorber (CSTA) (cm3)

x :

Axial position normalized by the bed length

y〉:

Dimensionless average concentration in the solid phase

y b ′ or y b :

Dimensionless concentration in the fluid phase

y f ′:

Dimensionless concentration in the fluid phase at the film

y T :

Dimensionless total concentration in the fluid phase

y* or y M :

Dimensionless concentration in the solid phase at the particle surface

z :

The distance to the symmetry plane (cm)

z′:

Bed axial position (cm)

W :

Mass of biosorbent (g)

ε :

Porosity of the bed

τ :

Space time (s)

τ d :

Time constant for intraparticle diffusion

τ f :

Time constant for film diffusion

θ :

Dimensionless time

ρ ap :

Apparent density of particles (g solid/cm3 particle)

ξ :

The batch capacity factor

ξ′:

Adsorber capacity factor for saturation

ξ″:

Adsorber capacity factor for desorption

References

  • Al-Ashed, S., Duvnjak, Z.: Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol. Prog. 11, 638–642 (1995)

    Article  Google Scholar 

  • Atkinson, B., Bux, F., Kasan, H.: Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24(2), 129–135 (1998)

    CAS  Google Scholar 

  • Babel, S., Kurniawan, T.A.: Low-cost adsorbents for heavy metals uptake from contamined water: a review. J. Hazard. Mater. B97, 219–243 (2003)

    Article  Google Scholar 

  • Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D.: A review of potentially low-cost sorbents for heavy metals. Water Res. 33(11), 2469–2479 (1999)

    Article  CAS  Google Scholar 

  • Barba, D., Beolchini, F., Vegliò, F.: A simulation study on biosorption of heavy metals by confined biomass in UF/MF membrane reactors. Hydrometallurgy 59, 89–99 (2001)

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Vegliò, F.: Modeling of copper biosorption by Arthrobacter sp. in a UF/MF membrane reactor. Environ. Sci. Technol. 35, 3048–3054 (2001)

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., Vegliò, F.: Copper biosorption by Sphaerotilus natans confined in UF membrane module: experimental study and kinetic modeling. Hydrometallurgy 72, 21–30 (2004)

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., Vegliò, F.: Continuous biosorption of copper and lead in single and binary systems using Sphaerotilus natans cells confined by a membrane: experimental validation of dynamic models. Hydrometallurgy 76, 73–85 (2005)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Davis, T.A., Volesky, B., Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37, 4311–4330 (2003)

    Article  CAS  Google Scholar 

  • Dean, J.A.: Lange’s Handbook of Chemistry, 12th edn. McGraw–Hill, New York (1979)

    Google Scholar 

  • Freundlich, H.: Üeber die Adsorption in Löesungen. Z. Phys. Chem. 57, 385–470 (1907)

    CAS  Google Scholar 

  • Froment, G.F., Bischof, K.B.: Chemical Reactor Analysis and Design. Wiley, New York (1990)

    Google Scholar 

  • Gavrilescu, M.: Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 4(3), 219–231 (2004)

    Article  CAS  Google Scholar 

  • Glueckauf, E., Coates, J.I.: Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, J. Chem. Soc. pp. 1315–1321 (1947)

  • Hindmarsh, A.C.: Odepack, a Systematized Collection of ODE Solvers, in Scientific Computing. Scientific Computing, Amsterdam (1983)

    Google Scholar 

  • Kinniburgh, D.G., Riemsdijk, W.H.V., Koopal, L.K., Borkovec, M., Benedetti, M.F., Avena, M.J.: Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A 151, 147–166 (1999)

    Article  CAS  Google Scholar 

  • Kratochvil, D., Volesky, B.: Biosorption of Cu from ferruginous wastewater by algal biomass. Water Res. 32(9), 2760–2768 (1998)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Madsen, N., Sincovec, R.: PDECOL: General collocation software for partial differential equations. ACM Trans. Math. Soft. 5(3), 326–351 (1979)

    Article  Google Scholar 

  • Matheickal, J.T., Yu, Q.: Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Biores. Technol. 69(3), 223–229 (1999)

    Article  CAS  Google Scholar 

  • Mouradi-Givernaud, A., Hassani, L.A., Givernaud, T., Lemoine, Y., Benharbet, O.: Biology and agar composition of Gelidium sesquipedale harvested along the Atlantic coast of Morocco. In: Hydrobiologia, pp. 391–395 (1999)

  • Nieboer, E., McBryde, W.A.E.: Free-energy relationship in coordination chemistry, III: a comprehensive index to complex stability. Can. J. Chem. 51, 2512–2524 (1973)

    Article  CAS  Google Scholar 

  • Pagnanelli, F., Beolchini, F., Biase, A.D., Vegliò, F.: Biosorption of binary heavy metal systems onto Sphaerotilus natans cells confined in an UF/MF membrane reactor: dynamic simulations by different Langmuir-type competitive models. Water Res. 38, 1055–1061 (2004)

    Article  CAS  Google Scholar 

  • Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  • Radke, C.J., Prausnitz, J.M.: Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. Fundam. 11(4), 445–451 (1972)

    Article  CAS  Google Scholar 

  • Reddad, Z., Gérente, C., Andrès, Y., Thibault, J.-F., Cloirec, P.L.: Cadmium and lead adsorption by a natural polysaccharide in Mf membrane reactor: experimental analysis and modeling. Water Res. 37, 3983–3991 (2003)

    Article  CAS  Google Scholar 

  • Redlich, O., Peterson, C.: Useful adsorption isotherm. J. Phys. Chem. 63, 1024 (1959)

    Article  CAS  Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases & Liquids, 4th edn. McGraw–Hill, New York (1987)

    Google Scholar 

  • Rodrigues, A.E., Beira, E.C.: Staged approach to percolation processes. Part I. Sorption processes in a perfectly mixed reactor: influence of nonlinear equilibrium isotherm and external mass transfer resistance, AIChE J. 25, 416–423 (1979)

    CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  • Vignon, M.R., Morgan, E., Rochas, C.: Gelidium sesquipedale (Gelidiales, Rhodophyta), I: soluble polymers. Bot. Mar. 37, 325–329 (1994a)

    CAS  Google Scholar 

  • Vignon, M.R., Rochas, C., Vuong, R., Tekeley, P., Chanzy, H.: Gelidium sesquipedale (Gelidiales, Rhodophyta), II: an untrastructural and morphological study. Bot. Mar. 37, 331–340 (1994b)

    Article  Google Scholar 

  • Vilar, V.J.P.: Remoção de iões metálicos em solução aquosa por resíduos da indústria de extracção do agar. PhD thesis, Faculty of Engineering University of Porto, Porto (2006)

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Proc. Biochem. 40(10), 3267–3275 (2005a)

    Article  CAS  Google Scholar 

  • Vilar, V.J.P., Sebesta, F., Botelho, C.M.S., Boaventura, R.A.R.: Equilibrium and kinetic modeling of Pb2+ biosorption by granulated agar extraction algal waste. Proc. Biochem. 40(10), 3276–3284 (2005b)

    Article  CAS  Google Scholar 

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Equilibrium and kinetic modeling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res. 40(2), 291–302 (2006a)

    Article  CAS  Google Scholar 

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behavior. J. Hazard. Mater., doi:10.1016/j.jhazmat.2006.1012.1055 (2006b)

    Google Scholar 

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Copper desorption from Gelidium algal biomass. Water Res. 41(7), 1569–1579 (2007a)

    Article  CAS  Google Scholar 

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium. Biores. Technol., doi:10.1016/j.biortech.2007.01.042 (2007b)

    Google Scholar 

  • Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: Kinetics and equilibrium modeling of lead uptake by algae Gelidium and algal waste from agar extraction industry. J. Hazard. Mater. 143(1–2), 396–408 (2007c)

    Article  CAS  Google Scholar 

  • Volesky, B.: Biosorption of Heavy Metals. CRC Press, Montreal (1990)

    Google Scholar 

  • Volesky, B.: Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59, 203–216 (2001)

    Article  CAS  Google Scholar 

  • Volesky, B.: Sorption and Biosorption, 1st edn. BV Sorbex, Quebec (2003)

    Google Scholar 

  • Wase, J., Forster, C.: Biosorbents for Metal Ions. Taylor & Francis, London (1997)

    Google Scholar 

  • Yang, J., Volesky, B.: Intraparticle diffusivity of Cd ions in a new biosorbent material. J. Chem. Technol. Biotechnol. 66, 355–364 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui A. R. Boaventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilar, V.J.P., Botelho, C.M.S. & Boaventura, R.A.R. Modeling equilibrium and kinetics of metal uptake by algal biomass in continuous stirred and packed bed adsorbers. Adsorption 13, 587–601 (2007). https://doi.org/10.1007/s10450-007-9029-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9029-1

Keywords

Navigation