Skip to main content
Log in

Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite element method for approximating a second-order linear viscoelastic wave equation with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete convergence analysis is considered. The second-order Newmark scheme is employed to develop the fully discrete scheme. We obtain supercloseness of order two, which is two orders higher than the optimal convergence rate in \(L^{\infty }(L^{2})\) and \(L^{\infty }(H^{1})\) norms. In other words, we attain \(\mathcal {O}(h^{k+3}+\tau ^{2})\) in \(L^{\infty }(L^{2})\) norm and \(\mathcal {O}(h^{k+2}+\tau ^{2})\) in \(L^{\infty }(H^{1})\) norm. Several numerical experiments in a two-dimensional setting are carried out to validate our theoretical convergence findings. These experiments confirm the robustness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, Sec. Ed. Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for the wave equation. Comput. Methods Appl. Mech Engrg. 200(5-8), 837–849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Taweel, A., Hussain, S., Wang, X.: A stabilizer free weak Galerkin finite element method for parabolic equation. J. Comput. Appl Math. 392, 113373 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al-Taweel, A., Mu, L.: A new upwind weak Galerkin finite element method for linear hyperbolic equations. J. Comput. Appl Math. 390, 113376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Al-Taweel, A., Wang, X.: A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer Math. 150, 444–451 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Al-Taweel, A., Wang, X., Ye, X., Zhang, S.: A stabilizer free weak Galerkin finite element method with supercloseness of order two. Numer Methods Partial Diff. Equ. 37(2), 1012–1029 (2021)

    Article  MathSciNet  Google Scholar 

  7. Ammari, H., Chen, D., Zou, J.: Well-posedness of an electric interface model and its finite element approximation. Math. Models Methods Appl. Sci. 26(03), 601–625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Engrg. 209, 129–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baker, G.A., Dougalis, V.A.: On the \(\mathrm {L}^{\infty }\) convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp. 34(150), 401–424 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Bonnasse-Gahot, M., Calandra, H., Diaz, J., Lanteri, S.: Hybridizable discontinuous Galerkin method for the 2-D frequency-domain elastic wave equations. Geophys. J Internat. 213(1), 637–659 (2018)

    Article  Google Scholar 

  12. Burman, E., Duran, O., Ern, A.: Hybrid high-order methods for the acoustic wave equation in the time domain. Commun. Appl. Math Comput. 4 (2), 597–633 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burman, E., Duran, O., Ern, A., Steins, M.: Convergence analysis of hybrid high-order methods for the wave equation. J. Sci Comput. 87 (3), 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Quart. Appl Math. 39(4), 433–454 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, H., Lu, P., Xu, X.: A hybridizable discontinuous Galerkin method for the helmholtz equation with high wave number. SIAM J. Numer Anal. 51(4), 2166–2188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math Comp. 83(285), 65–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shu, C. -W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cowsat, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element methods for the wave equation. Comput. Methods Appl. Mech Engrg. 82(1-3), 205–222 (1990)

    Article  MathSciNet  Google Scholar 

  19. Deka, B., Kumar, N.: A systematic study on weak Galerkin finite element method for second order parabolic problems. arXiv:2103.13669 (2020)

  20. Deka, B., Kumar, N.: Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer Math. 162, 81–105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deka, B., Roy, P.: Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer Methods Partial Differential Equations 36(4), 734–755 (2020)

    Article  MathSciNet  Google Scholar 

  22. Dong, Z., Ern, A.: Hybrid high-order and weak Galerkin methods for the biharmonic problem. arXiv:2103.16404 (2021)

  23. Dong, Z., Ern, A.: Hybrid high-order and weak Galerkin methods for the biharmonic problem. SIAM J. Numer. Anal. 60(5), 2626–2656 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dutta, J., Deka, B.: Optimal a priori error estimates for the finite element approximation of dual-phase-lag bio heat model in heterogeneous medium. J. Sci Comput. 87(2), 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Egger, H., Radu, B.: Super-convergence and post-processing for mixed finite element approximations of the wave equation. Numer. Math. 140(2), 427–447 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, L., Liang, D., Zhang, B.: Error estimates for mixed finite element approximations of the viscoelasticity wave equation. Math Methods Appl. Sci. 27(17), 1997–2016 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gekeler, E.: Linear multistep methods and Galerkin procedures for initial boundary value problems. SIAM J. Numer Anal. 13(4), 536–548 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech Anal. 31(2), 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, Y., Li, J., Li, D.: Developing weak Galerkin finite element methods for the wave equation. Numer Methods Partial Differential Equations 33(3), 868–884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lambrecht, L., Lamert, A., Friederich, W., Möller, T., Boxberg, M.S.: A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media. Geophys. J. Internat. 212(3), 1570–1587 (2017)

    Article  Google Scholar 

  32. Larsson, S., Thomée, V., Wahlbin, L.B.: Finite-element methods for a strongly damped wave equation. IMA J. Numer Anal. 11(1), 115–142 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Q.H., Wang, J.: Weak Galerkin finite element methods for parabolic equations. Numer Methods Partial Differential Equations 29 (6), 2004–2024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lim, H., Kim, S., Douglas, J. Jr.: Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math. 57(2), 194–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, G., Liu, J., Sadre-Marandi, F.: A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods. J. Comput. Appl. Math. 273, 346–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, R., Ye, X., Zhang, S., Zhu, P.: A weak Galerkin finite element method for singularly perturbed convection-diffusion–reaction problems. SIAM J. Numer Anal. 56(3), 1482–1497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, J., Tavener, S., Wang, Z.: Lowest-order weak Galerkin finite element method for darcy flow on convex polygonal meshes. SIAM J. Sci Comput. 40(5), B1229–B1252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nikolic, V., Wohlmuth, B.: A priori error estimates for the finite element approximation of westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer Anal. 57(4), 1897–1918 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pani, A.K., Yuan, J.Y.: Mixed finite element method for a strongly damped wave equation. Numer Methods Partial Differential Equations 17(2), 105–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Qiu, T., Tien, C.: Short-pulse laser heating on metals. Int. J Heat Mass Transf. 35(3), 719–726 (1992)

    Article  Google Scholar 

  41. Rauch, J.: On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal. 22(2), 245–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Raynal, M.L.: On some nonlinear problems of diffusion. In: Volterra Equations, pp 251–266. Springer (1979)

  43. Robinson, J.C.: Infinite-dimensional dynamical system: an introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge Texts Appl Math (2001)

  44. Shi, D.Y., Tang, Q.L.: Nonconforming H1-Galerkin mixed finite element method for strongly damped wave equations. Numer. Funct. Anal Optim. 34 (12), 1348–1369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shukla, K., Chan, J., Maarten, V.: A high order discontinuous Galerkin method for the symmetric form of the anisotropic viscoelastic wave equation. Comput. Math Appl. 99, 113–132 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Thomée, V., Wahlbin, L.: Maximum-norm estimates for finite-element methods for a strongly damped wave equation. BIT Numer. Math. 44 (1), 165–179 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales (1995)

  48. Tzou, D.Y., Chiu, K.: Temperature-dependent thermal lagging in ultrafast laser heating. Int. J Heat Mass Transf. 44(9), 1725–1734 (2001)

    Article  MATH  Google Scholar 

  49. Van Rensburg, N., Stapelberg, B.: Existence and uniqueness of solutions of a general linear second-order hyperbolic problem. IMA J. Appl. Math. 84(1), 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci Comput. 74(3), 1369–1396 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math Comp. 83(289), 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, X., Gao, F., Sun, Z.: Weak Galerkin finite element method for viscoelastic wave equations. J. Comput. Appl Math. 375, 112816 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ye, X., Zhang, S.: A stabilizer-free weak Galerkin finite element method on polytopal meshes. J. Comput. Appl Math. 371, 112699 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ye, X., Zhang, S.: A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes. SIAM J. Numer Anal. 58(5), 2572–2588 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ye, X., Zhang, S.: A stabilizer free WG method for the stokes equations with order two superconvergence on polytopal mesh. Electron. Res Arch. 29 (6), 3609–3627 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ye, X., Zhang, S.: A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III. J. Comput. Appl. Math. 394, 113538 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ye, X., Zhang, S.: Achieving superconvergence by one-dimensional discontinuous finite elements: The CDG method. East Asian J. Appl. Math. 12(4), 781–790 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhai, Q., Zhang, R., Malluwawadu, N., Hussain, S.: The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys 24, 152–166 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, H., Zou, Y., Xu, Y., Zhai, Q., Yue, H.: Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal Model 13(4), 525–544 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Zhen-dong, L.: The mixed finite element method for the non stationary conduction convection problems. Chinese J. Numer. Math. Appl. 20(2), 29–59 (1998)

    MathSciNet  Google Scholar 

  62. Zhou, S., Gao, F., Li, B., Sun, Z.: Weak Galerkin finite element method with second-order accuracy in time for parabolic problems. Appl. Math Lett. 90, 118–123 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author are grateful to the anonymous referees for valuable comments and suggestions which greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.1.

Differentiating (3.1) twice with respect to time t and substitute \(\phi _{h}= u^{\prime \prime \prime }_{h}(t),\) we have

$$ \begin{array}{@{}rcl@{}} (u^{\prime\prime\prime\prime}_{h},u^{\prime\prime\prime}_{h})+\mathcal{A}_{1,w}(u^{\prime\prime}_{h},u^{\prime\prime\prime}_{h})+\mathcal{ A}_{2,w}(u^{\prime\prime\prime}_{h},u^{\prime\prime\prime}_{h}) = (f^{\prime\prime}, u^{\prime\prime\prime}_{h}). \end{array} $$

We can restate the above equation as

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}\frac{d}{dt}\Big(\|u^{\prime\prime\prime}_{h}\|^{2}+\mathcal{A}_{1,w}(u^{\prime\prime}_{h}, u^{\prime\prime}_{h})\Big)+\mathcal{A}_{2,w}(u^{\prime\prime\prime}, u^{\prime\prime\prime}) = (f^{\prime\prime}, u^{\prime\prime\prime}). \end{array} $$

Now, integrate the above equation with respect to time from 0 to t and apply the Cauchy-Schwarz inequality; we get

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2}\|u^{\prime\prime\prime}_{h}\|^{2}+\frac{1}{2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert u^{\prime\prime}_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}+{{\int}_{0}^{t}}\|u^{\prime\prime\prime}_{h}\|^{2}ds+{{\int}_{0}^{t}}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert u^{\prime\prime\prime}_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}ds \\&& \quad\leq \frac{1}{2}\|u^{\prime\prime\prime}_{h}(0)\|^{2}+\frac{1}{2}\left\vert\left\vert\left\vert{u^{\prime\prime}_{h}(0)}\right\vert\right\vert\right\vert^{2}+\frac{1}{2}\Big({{\int}_{0}^{t}}\|u^{\prime\prime\prime}_{h}(s)\|^{2}ds+{{\int}_{0}^{t}}\|f^{\prime\prime}\|^{2}ds\Big). \end{array} $$

We can rearrange the above equation as

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}}\|u^{\prime\prime\prime}_{h}(s)\|^{2}ds+{{\int}_{0}^{t}}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert u^{\prime\prime\prime}_{h}(s)\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}ds \leq C\Big(\|u^{\prime\prime\prime}_{h}(0)\|^{2}+\left\vert\left\vert\left\vert{u^{\prime\prime\prime}_{h}(0)}\right\vert\right\vert\right\vert^{2}\\&& ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+{{\int}_{0}^{t}}\|f^{\prime\prime}(s)\|^{2}ds\Big). \end{array} $$
(6.2)

Now, we need to bound \(\|u^{\prime \prime \prime }_{h}(0)\|^{2}\) and \({\left \vert \kern -0.25ex\left \vert \kern -0.25ex\left \vert u^{\prime \prime \prime }_{h}(0)\right \vert \kern -0.25ex\right \vert \kern -0.25ex\right \vert }^{2}\) in (6.2). To this end, taking t → 0+ in (1.1), it follow that for 0 ≤ λk,

$$ \begin{array}{@{}rcl@{}} \|u^{\prime\prime}(0)\|_{\lambda} \leq C \Big(\|u^{0}\|_{\lambda+2}+\|u^{\prime}(0)\|_{\lambda+2}+\|f\|_{H^{1}(H^{\lambda})}\Big) \end{array} $$
(6.3)

and

$$ \begin{array}{@{}rcl@{}} \|u^{\prime\prime\prime}(0)\|_{\lambda} \leq C \Big(\|u^{0}\|_{\lambda+4}+\|u^{\prime}(0)\|_{\lambda+4}+\|f\|_{H^{2}(H^{\lambda})}\Big) \end{array} $$
(6.4)

Next, we differentiate (3.1) with respect to time t and using the definition of \(\mathcal {E}_{h}\) operator (3.18). Then, setting t → 0+ to have

$$ \begin{array}{@{}rcl@{}} (u^{\prime\prime\prime}_{h}(0), \phi_{0}) &=&-\mathcal{A}_{1,w}(u^{\prime}_{h}(0),\phi_{h})-\mathcal{A}_{2,w}(u_{h}^{\prime\prime}(0),\phi_{h})+(f^{\prime}(0),\phi_{0}) \\ &=&-\mathcal{A}_{1,w}(\mathcal{E}_{h}u^{\prime}(0),\phi_{h})-\mathcal{A}_{2,w}(\mathcal{E}_{h}u^{\prime\prime}(0),\phi_{h})+(f^{\prime}(0),\phi_{0}) \\ &=& (\nabla\cdot(\alpha\nabla u^{\prime}(0),\phi_{h}))+(\nabla\cdot(\beta\nabla u^{\prime\prime}(0)),\phi_{h})+(f^{\prime}(0),\phi_{0}) \end{array} $$

Now, applying the Cauchy-Schwarz inequality together with the estimate (6.3) in the above equation with λ = 2, we obtained

$$ \begin{array}{@{}rcl@{}} \|u^{\prime\prime\prime}_{h}(0)\|\leq C \Big(\|u^{0}\|_{H^{4}({\Omega})}+\|v^{0}\|_{H^{4}({\Omega})}+\|f\|_{H^{2}(J;H^{2}({\Omega}))}\Big). \end{array} $$
(6.5)

In the previous estimate, we have used the fact that (cf. [43], Proposition 7.1)

$$ \sup_{0\le t \le T}\|v(t)\|_{\mathcal{B}}\leq C(T)\|v\|_{H^{1}(J;\mathcal{B})} \forall v\in H^{1}(J;\mathcal{B}), $$
(6.6)

for any Banach space \({\mathscr{B}}.\)

As a consequence of estimate (6.5) together with standard inverse inequality, estimate (6.4) with λ = 2, and the fact that \(\|u\|_{L^{2}(K)}\leq Ch\|u\|_{2,K},\) we obtain

$$ \begin{array}{@{}rcl@{}} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert u^{\prime\prime\prime}_{h}(0)\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} \!\leq\! C h^{-1}\|{u^{\prime\prime\prime}_{h}(0)}\|\!\leq\! C \Big(\|u^{0}\|_{H^{6}({\Omega})}+\|v^{0}\|_{H^{6}({\Omega})}+\|f\|_{H^{2}(J;H^{2})}\Big).~~~~~~~~~ \end{array} $$
(6.7)

Again, we are differentiating (3.1) thrice with respect to time t and substitute \(\phi _{h}= u^{\prime \prime \prime \prime }_{h}(t)\), we get

$$ \begin{array}{@{}rcl@{}} (u^{\prime\prime\prime\prime\prime}_{h},u^{\prime\prime\prime\prime}_{h})+\mathcal{A}_{1,w}(u^{\prime\prime\prime}_{h},u^{\prime\prime\prime\prime}_{h})+\mathcal{ A}_{2,w}(u^{\prime\prime\prime\prime}_{h},u^{\prime\prime\prime\prime}_{h}) = (f^{\prime\prime\prime},u^{\prime\prime\prime\prime}_{h}). \end{array} $$

Then, it follows from (6.2) that

$$ \begin{array}{@{}rcl@{}} &&{{\int}_{0}^{t}}\|u^{\prime\prime\prime\prime}_{h}(s)\|^{2}ds+{{\int}_{0}^{t}}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert u^{\prime\prime\prime\prime}_{h}(s)\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}ds \leq C\Big(\|u^{\prime\prime\prime\prime}_{h}(0)\|^{2}+\left\vert\left\vert\left\vert{u^{\prime\prime\prime}_{h}(0)}\right\vert\right\vert\right\vert^{2}\\&&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad +{{\int}_{0}^{t}}\|f^{\prime\prime\prime}(s)\|^{2}ds\Big). \end{array} $$
(6.8)

Here, the term \({\left \vert \kern -0.25ex\left \vert \kern -0.25ex\left \vert u^{\prime \prime \prime }_{h}(0)\right \vert \kern -0.25ex\right \vert \kern -0.25ex\right \vert }\) can be bound using the estimate (6.7). To the bound \(\|u^{\prime \prime \prime \prime }_{h}(0)\|\) and in (6.8), we follow the step from (6.3)–(6.7), and we get

$$ \begin{array}{@{}rcl@{}} \|u^{\prime\prime\prime\prime}_{h}(0)\|\leq C \Big(\|u^{0}\|_{H^{6}({\Omega})}+\|v^{0}\|_{H^{6}({\Omega})}+\|f\|_{H^{3}(J;H^{2}({\Omega}))}\Big). \end{array} $$

Lemma 6.1

Let wH1(0,T; H2(Ω)) be the solutions of the (3.19) and wh be its SFWG approximation. Then, there exists a constant C such that

$$ \begin{array}{@{}rcl@{}} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w-w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\leq Ch\|\zeta_{u}\|_{L^{2}(J;L^{2}({\Omega}))}, \end{array} $$
(6.9)

Proof

The following analysis used to derive (3.9), we obtain

$$ \begin{array}{@{}rcl@{}} \mathcal{A}_{1,w}(\mathcal{Q}_{h}w, \phi_{h})&+&\mathcal{A}_{2,w}((\mathcal{Q}_{h}w)_{t}, \phi_{h}) = (f_{w}, \phi_{0})+\ell_{1}(w, \phi_{h})+ \ell_{2}(w, \phi_{h}) \\&+&\ell_{3}(w^{\prime}, \phi_{h})+ \ell_{4}(w^{\prime}, \phi_{h}), \forall \phi_{h}=\{\phi_{0}, \phi_{b}\}\in \mathcal{V}_{h}^{0}. \end{array} $$
(6.10)

Next, we may define \(w_{h}\in \mathcal {V}_{h}^{0}\) as the solution to the SFWG approximation of the equation (3.19) that follows

$$ \mathcal{A}_{1,w}(w_{h}, \varphi_{h})+\mathcal{A}_{2,w}(w_{h}^{\prime}, \varphi_{h}) = (f_{w}, \varphi_{0}), \forall \varphi_{h}=\{ \varphi_{0}, \varphi_{b}\}\in \mathcal{V}_{h}^{0}, $$
(6.11)

with \(w_{h}(\tau ) = \mathcal {Q}_{h}w^{0}.\)

Now, subtracting (6.11) from the equation (6.10), we arrive at the following error relation for \(\tilde {e}_{h}: = \mathcal {Q}_{h}w-{w}_{h}\)

$$ \begin{array}{@{}rcl@{}} &&\mathcal{A}_{1,w}(\tilde{e}_{h}(t), \phi_{h})+\mathcal{A}_{2,w}(\tilde{e}_{h}^{\prime}(t), \phi_{h}) = \ell_{1}(w, \phi_{h})+ \ell_{2}(w, \phi_{h})+\ell_{3}(w^{\prime}, \phi_{h}) \\&&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + \ell_{4}(w^{\prime},\phi_{h}), \forall \varphi_{h}\in \mathcal{V}_{h}^{0}, t\in (0, T]. \end{array} $$
(6.12)

Finally, putting \(\phi _{h}=\tilde {e}_{h}\) in (6.12) and then standard analysis as we did in Theorem 3.2 combined with the estimations (3.32) and (3.36) yields the following estimate

$$ \begin{array}{@{}rcl@{}} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \tilde{e}_{h}(t)\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}&\le& C\big({\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \tilde{e}_{h}(0)\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}+h^{2}\|w\|_{H^{1}(0, T;H^{2}({\Omega}))}^{2}\big)\\ &\le& Ch^{2}\|w\|_{H^{1}(0, T;H^{2}({\Omega}))}^{2}\\ &\le& Ch^{2}\|\zeta_{u}\|^{2}_{L^{2}(J;L^{2}({\Omega}))}. \end{array} $$

Here, we have used the estimate (3.26) together with the fact that \(\tilde {e}_{h}(0)= 0.\) The proof is completed. □

Remark 6.1

We recall a dual problem that seeks a solution wH1(J; H2(Ω)) such that

$$ \begin{array}{@{}rcl@{}} -\nabla\cdot\big((\alpha\nabla w)-(\beta\nabla w^{\prime})\big) = \zeta_{u} \text{in} {\Omega}\times J, \end{array} $$
(6.13)

and w(τ) = 0 for some τJ.

We may define \(w_{h}\in \mathcal {V}_{h}^{0}\) as the solution to the discrete problem of the equation (6.13) that follows

$$ \mathcal{A}_{1,w}(w_{h}, \varphi_{h})-\mathcal{A}_{2,w}(w_{h}^{\prime}, \varphi_{h}) = (\zeta_{u}, \varphi_{0}), \forall \varphi_{h}=\{ \varphi_{0}, \varphi_{b}\}\in \mathcal{V}_{h}^{0}, $$
(6.14)

with wh(τ) = 0.

Setting φh = wh in (6.14) and using the coercive property (2.12), we obtain

$$ \begin{array}{@{}rcl@{}} \sigma_{*}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}-\frac{1}{2}\frac{d}{dt}\big(\mathcal{A}_{2,w}(w_{h}(s), w_{h}(s))\big)\leq \|\zeta_{u}\|\|w_{0}\|. \end{array} $$

Next, integrate the above equation in [0,τ] to obtain

$$ \begin{array}{@{}rcl@{}} \sigma_{*}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^{2}+\frac{1}{2}\mathcal{A}_{2,w}(w_{h}(0), w_{h}(0))\Big)\leq \|\zeta_{u}\|\|w_{0}\|. \end{array} $$

Here, we used the fact that wh(τ) = 0 and hence, \(\mathcal {A}_{2,w}(w_{h}(\tau ), w_{h}(\tau )) = 0.\)

Now, we apply the Poincaŕe-type inequality (2.16) and positive definiteness of \(\mathcal {A}_{2,w}(\cdot , \cdot )\) in the above estimate, we get

$$ {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C\|\zeta_{u}\|. $$
(6.15)

When we set \( \varphi _{h}=w_{h}^{\prime }\) in (6.14), we can get

$$ {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert w_{h}^{\prime}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C\|\zeta_{u}\|. $$
(6.16)

The following estimates are satisfied by wh, which is the SFWG approximation to w (see estimate (6.9))

$$ {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w-w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\leq Ch\|\zeta_{u}\|_{L^{2}(L^{2})}. $$
(6.17)

Now, we combine estimates (6.15) and (6.17) to obtain

$$ \begin{array}{@{}rcl@{}} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}={\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w-w_{h}+w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} &\leq& {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w-w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} +{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert w_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\leq & C\|\zeta_{u}\|_{L^{2}(L^{2})}. \end{array} $$
(6.18)

As a consequence, we can prove that

$$ \begin{array}{@{}rcl@{}} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w^{\prime}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}={\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert \mathcal{Q}_{h}w^{\prime}-w_{h}^{\prime}+w^{\prime}_{h}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} \leq C\|\zeta_{u}\|_{L^{2}(L^{2})}. \end{array} $$
(6.19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients. Adv Comput Math 49, 12 (2023). https://doi.org/10.1007/s10444-023-10010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10010-w

Keywords

Mathematics Subject Classification (2010)

Navigation