Skip to main content
Log in

Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a linearized energy-stable scalar auxiliary variable (SAV) Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained without any certain time-step restrictions. The key to the analysis is to derive the boundedness of the numerical solution in the \(H^1\)-norm, which is different from the temporal-spatial error splitting approach used in the previous literature. Meanwhile, numerical results are provided to confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Achouri, T., Kadri, T., Omrani, K.: Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations. Comput. Math. Appl. 82, 74–96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  3. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, R.: Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation. J. Sci. Comput. 69, 1–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, W.X., Li, D.F., Zhang, Z.M.: Optimal superconvergence of energy conserving local discontinuous Galerkin methods for wave equations, Commun. Comput. Phys. 21, 211–236 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, W.X., Li, D.F., Zhang, Z.M.: Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear wave equations. Sci. China Math. 64, 1–18 (2021)

    MathSciNet  Google Scholar 

  8. Chen, L., Chen, Y.: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods. J. Sci. Comput. 49, 383–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dodd, R.K., Eilbeck, I.C., Morris, J.D., Gibbon, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London, New York (1982)

  10. Egger, H., Radu, B.: Super-convergence and post-processing for mixed finite element approximations of the wave equation. Numer. Math. 140, 427–447 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Furihata, D.: Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134(1/2), 37–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, H.D.: Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52, 2574–2593 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differential Equations 10, 129–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, M.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the discrete-time case. Numer. Methods Partial Differential Equations 10, 149–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, H.D., Qiu, W.F.: Error analysis of mixed finite element methods for nonlinear parabolic equations. J. Sci. Comput. 77, 1660–1678 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grote, M.J., Schneebeli, A., Schotzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, D., Park, E., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51, 267–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 53, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal. 51, 1959–1977 (2013)

  22. Li, D.F., Wang, J.L.: Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, D.F., Wang, J.L., Zhang, J.W.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  24. Li, D.F., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Q., Lin, J.F.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  26. Pani, A.K., Sinha, R.K., Otta, A.K.: An \(H^1\)-Galerkin mixed methods for second order hyperbolic equations. Int. J. Numer. Anal. Model. 1(2), 111–129 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, D.Y., Wang, J.J.: Unconditional Superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput. 72, 1093–1118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shi, D.Y., Yang, H.J.: Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations. Adv. Comput. Math. 45, 3173–3194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Talha, A.: Conservative finite difference scheme for the nonlinear fourth-order wave equation. Appl. Math. Comput. 359, 121–131 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Tourigny, Y.: Optimal \(H^1\) estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  34. Wang, J.L.: A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, K.Y., Chen, Y.P.: Two-grid mixed finite element method for nonlinear hyperbolic equations. Comput. Math. Appl. 74(6), 1489–1505 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, K.Y., Wang, Q.S.: Expanded mixed finite element method for second order hyperbolic equations. Comput. Math. Appl. 78(8), 2560–2574 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein-Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, L., Allen, M.: A two-grid method for mixed finite-element solution of reaction-diffusion equations. Numer. Methods Partial Differential Equations 15, 317–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, C., Pei, L.F.: Unconditional superconvergence analysis of two modified finite element fully discrete schemes for nonlinear Burgers’ equation. Appl. Numer. Math. 185, 1–17 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 12101568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaijun Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H. Unconditionally Superconvergence Error Analysis of an Energy-Stable and Linearized Galerkin Finite Element Method for Nonlinear Wave Equations. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00301-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00301-w

Keywords

Mathematics Subject Classification

Navigation