Skip to main content
Log in

Ternary image decomposition with automatic parameter selection via auto- and cross-correlation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the decomposition of images into cartoon, texture and noise components. A two-stage variational model is proposed which is parameter-free and both context- and noise-unaware. In the first stage, the additive white noise component is separated and then the denoised image is further split into cartoon and texture, in the second stage. Auto-correlation and cross-correlation principles represent the key aspects of the two variational stages. The solutions of the two optimisation problems are efficiently obtained by the alternating directions method of multipliers (ADMM). Numerical results show the potentiality of the proposed approach for decomposing images corrupted by different kinds of additive white noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aujol, J.F., Aubert, G., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22, 71–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. J. Math. Imaging Vis. 63, 84–104 (2005)

    MATH  Google Scholar 

  3. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  4. Chan, R., Lanza, A., Morigi, S., Sgallari, F.: Convex non-convex image segmentation. Numer. Math. 138(3), 635–680 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilles, J.: Noisy image decomposition: a new structure, texture and noise model based on local adaptivity. J. Math. Imaging Vis. 28, 285–295 (2007)

    Article  MathSciNet  Google Scholar 

  6. Gilles, J.: Noisy multiscale texture separation. Multiscale Model. Simul. 10, 1409–1427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilles, J., Meyer, Y.: Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images. IEEE Trans. Image Process. 19, 2793–2800 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huska, M., Lanza, A., Morigi, S., Selesnick, I.: A convex-nonconvex variational method for the additive decomposition of functions on surfaces. Inverse Probl. 35, 124008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huska, M., Kang, S.H., Lanza, A., Morigi, S.: A variational approach to additive image decomposition into structure, harmonic, and oscillatory components. SIAM J. Imaging Sci. 14(4), 1749–1789 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lanza, A., Morigi, S., Sgallari, F.: Variational image restoration with constraints on noise whiteness. J. Math Imaging Vis 53, 61–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lanza, A., Morigi, S., Sciacchitano, F., Sgallari, F.: Whiteness constraints in a unified variational framework for image restoration. J. Math. Imaging Vis. 60, 1503–1526 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization with parameter selection. J. Math. Imaging Vis. 56, 195–220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lanza, A., Morigi, S., Selesnick, I.W., Sgallari, F.: Sparsity-inducing nonconvex nonseparable regularization for convex image processing. SIAM J. Imaging Sci. 12(2), 1099–1134 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lanza, A., Pragliola, M., Sgallari, F.: Residual whiteness principle for parameter-free image restoration. Electron. Trans. Numer. Anal. 53, 329–351 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lanza, A., Morigi, S., Selesnick, I.W., Sgallari, F.: Convex non-Convex Variational Models, Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Berlin (2022)

    Google Scholar 

  16. Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process. 11(12), 1450–1456 (2002)

    Article  MathSciNet  Google Scholar 

  17. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American mathematical society, USA (2001)

  18. Osher, S.J., Sole, A., Vese, L.A.: Image decomposition and restoration using total variation minimization and the H− 1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Le, T.M., Vese, L.: Image decomposition using total variation and div(bmo). CAM04-76, UCLA (2004)

    Google Scholar 

  20. Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1-3), 553–572 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10), 1570–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, L., Wu, L., Fang, Z., Li, C.: A non-convex ternary variational decomposition and its application for image denoising. IET Signal Proc. (2021)

  24. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Group for Scientific Computation (GNCS-INDAM), Research Projects 2021, and in part by MIUR RFO projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Morigi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by: Raymond H. Chan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girometti, L., Lanza, A. & Morigi, S. Ternary image decomposition with automatic parameter selection via auto- and cross-correlation. Adv Comput Math 49, 1 (2023). https://doi.org/10.1007/s10444-022-10000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-10000-4

Keywords

Mathematics Subject Classification (2010)

Navigation