Skip to main content

Quaternary Image Decomposition with Cross-Correlation-Based Multi-parameter Selection

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

We propose a two-stage variational model for the additive decomposition of images into piecewise constant, smooth, textured and white noise components. The challenging separation of noise from texture is successfully achieved by including a normalized whiteness constraint in the model, and the selection of the regularization parameters is performed based on a novel multi-parameter cross-correlation principle. The two resulting minimization problems are efficiently solved by means of the alternating directions method of multipliers. Numerical results show the potentiality of the proposed model for the decomposition of textured images corrupted by several kinds of additive white noises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aujol, J.F., Aubert, G., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005). https://doi.org/10.1007/s10851-005-4783-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. J. Math. Imaging Vis. 63(1), 85–104 (2005). https://doi.org/10.1007/s11263-005-4948-3

    Article  MATH  Google Scholar 

  3. Aujol, J.F., Kang, S.H.: Color image decomposition and restoration. J. Vis. Commun. Image Represent. 17(4), 916–928 (2006). https://doi.org/10.1016/j.jvcir.2005.02.001

    Article  Google Scholar 

  4. Eriksson, A., Isaksson, M.: Pseudoconvex proximal splitting for L-infinity problems in multiview geometry. In: Proceedings of Computer Vision and Pattern Recognition (CVPR 2014), pp. 4066–4073 (2014). https://doi.org/10.1109/CVPR.2014.518

  5. Garnett, J.B., Le, T.M., Meyer, Y., Vese, L.: Image decompositions using bounded variation and generalized homogeneous besov spaces. Appl. Comput. Harmon. Anal. 23(1), 25–56 (2007). https://doi.org/10.1016/j.acha.2007.01.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Gholami, A., Hosseini, S.M.: A balanced combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals. Signal Process. 93(7), 1945–1960 (2013). https://doi.org/10.1016/j.sigpro.2012.12.008

    Article  Google Scholar 

  7. Girometti, L., Lanza, A., Morigi, S.: Ternary image decomposition with automatic parameter selection via auto- and cross-correlation. Adv. Comput. Math. 49(1) (2023). https://doi.org/10.1007/s10444-022-10000-4

  8. Huska, M., Kang, S.H., Lanza, A., Morigi, S.: A variational approach to additive image decomposition into structure, harmonic and oscillatory components. SIAM J. Imaging Sci. 14(4) (2021). https://doi.org/10.1137/20M1355987

  9. Huska, M., Lanza, A., Morigi, S., Selesnick, I.: A convex-nonconvex variational method for the additive decomposition of functions on surfaces. Inverse Probl. 35(12) (2019). https://doi.org/10.1088/1361-6420/ab2d44

  10. Lanza, A., Morigi, S., Sciacchitano, F., Sgallari, F.: Whiteness constraints in a unified variational framework for image restoration. J. Math. Imaging Vis. 60(9), 1503–1526 (2018). https://doi.org/10.1007/s10851-018-0845-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization with parameter selection. J. Math. Imaging Vis. 56(2), 195–220 (2016). https://doi.org/10.1007/s10851-016-0655-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, USA (2001)

    Google Scholar 

  13. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\)-norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2003). https://doi.org/10.1137/S1540345902416247

    Article  MathSciNet  MATH  Google Scholar 

  14. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  15. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003). https://doi.org/10.1023/A:1025384832106

    Article  MathSciNet  MATH  Google Scholar 

  16. Wen, Y.W., Sun, H.W., Ng, M.: A primal-dual method for the Meyer model of cartoon and texture decomposition. Numer. Linear Algebra Appl. 26(2) (2019). https://doi.org/10.1002/nla.2224

Download references

Acknowledgments

This work was supported in part by the National Group for Scientific Computation (GNCS-INDAM) and in part by MUR RFO projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lanza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girometti, L., Huska, M., Lanza, A., Morigi, S. (2023). Quaternary Image Decomposition with Cross-Correlation-Based Multi-parameter Selection. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics