Skip to main content
Log in

A structure-preserving algorithm for surface water flows with transport processes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a system of coupled equations modeling a shallow water flow with solute transport and introduce an artificial dissipation in order to improve the dissipation properties of the original cell-vertex central-upwind numerical scheme applied to these equations. Namely, a formulation is proposed which involves an artificial dissipation parameter and guarantees a consistency property between the continuity equation and the transport equation at the discrete level and, in addition, ensures the nonlinear stability and positivity of the scheme. A well-balanced positivity-preserving reconstruction is stated in terms of the conservative variable describing the concentration. We establish that constant-concentration states are preserved in space and time for any hydrodynamic flow field in the absence of source terms in the transport equation. Furthermore, we prove the maximum and minimum principles for the concentration. A suitable discretization of the diffusion term is used in combination with the proposed reconstruction procedure and artificial dissipation formulation and this allows us to prove the positivity of the concentration in the presence of diffusion effects. Finally, our numerical experiments confirm the well-balanced and positivity-preserving properties when the artificial dissipation is introduced in the central-upwind scheme, and the accuracy of the scheme for modeling surface water flows with transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing 25(6), 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Begnudelli, L., Sanders, B.F.: Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying. Journal of Hydraulic Engineering 132(4), 371–384 (2006)

    Article  Google Scholar 

  3. Behzadi, F., Shamsaei, B., Newman, J.C.: Solution of fully-coupled shallow water equations and contaminant transport using a primitive-variable Riemann method. Environmental Fluid Mechanics 18(2), 515–535 (2018)

    Article  Google Scholar 

  4. Beljadid, A., LeFloch, P.G.: A central-upwind geometry-preserving method for hyperbolic conservation laws on the sphere. Communications in Applied Mathematics and Computational Science 12(1), 81–107 (2017)

    Article  MathSciNet  Google Scholar 

  5. Beljadid, A., Mohammadian, A., Kurganov, A.: Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows. Computers & Fluids 136, 193–206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beljadid, A., Mohammadian, A., Qiblawey, H.M.: An unstructured finite volume method for large-scale shallow flows using the fourth-order Adams scheme. Computers & Fluids 88, 579–589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berthon, C., Foucher, F.: Efficient well-balanced hydrostatic upwind schemes for shallow-water equations. Journal of Computational Physics 231(15), 4993–5015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. Journal of Scientific Computing 56(2), 267–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonev, B., Hesthaven, J.S., Giraldo, F.X., Kopera, M.A.: Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction. Journal of Computational Physics 362, 425–448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brufau, P., García-Navarro, P.: Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique. Journal of Computational Physics 186(2), 503–526 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the saint-venant system. ESAIM: Mathematical Modelling and Numerical Analysis 45(3), 423–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Capilla, M.T., Balaguer-Beser, A.: A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. Journal of Computational and Applied Mathematics 252, 62–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cea, L., Vázquez-Cendón, M.E.: Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity. International Journal for Numerical Methods in Fluids 63(8), 903–930 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cea, L., Vázquez-Cendón, M.E.: Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations. Journal of Computational Physics 231(8), 3317–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. International Journal for Numerical Methods in Fluids 78(6), 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  16. Črnjarić-Žic, N., Vuković, S., Sopta, L.: Improved non-staggered central NT schemes for balance laws with geometrical source terms. International Journal for Numerical Methods in Fluids 46(8), 849–876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. de la Asunción, M., Castro, M.J., Mantas, J.M., Ortega, S.: Numerical simulation of tsunamis generated by landslides on multiple GPUs. Advances in Engineering Software 99, 59–72 (2016)

    Article  Google Scholar 

  18. De St Venant, B.: Theorie du mouvement non-permanent des eaux avec application aux crues des rivers et a l’introduntion des marees dans leur lit. Academic de Sci. Comptes Redus 73(99), 148–154 (1871)

    Google Scholar 

  19. Delestre, O., Lucas, C., Ksinant, P.A., Darboux, F., Laguerre, C., Vo, T.-N.-T., James, F., Cordier, S.: SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. International Journal for Numerical Methods in Fluids 72(3), 269–300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, J.: A robust second-order surface reconstruction for shallow water flows with a discontinuous topography and a manning friction. Advances in Computational Mathematics 46(2), 35 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frolkovic, P.: Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow. Acta Mathematica Universitatis Comenianae 1(68), 137–157 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Giraldo, F.X., Hesthaven, J.S., Warburton, T.: Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations. Journal of Computational Physics 181(2), 499–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Mathematics of Computation 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hernandez-Duenas, G., Beljadid, A.: A central-upwind scheme with artificial viscosity for shallow-water flows in channels. Advances in Water Resources 96, 323–338 (2016)

    Article  Google Scholar 

  25. Kong, J., Xin, P., Shen, C.J., Song, Z.Y., Li, L.: A high-resolution method for the depth-integrated solute transport equation based on an unstructured mesh. Environmental Modelling & Software 40, 109–127 (2013)

    Article  Google Scholar 

  26. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis 36(3), 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurganov, A., Lin, C.T.: On the reduction of numerical dissipation in central-upwind schemes. Communications in Computational Physics 2(1), 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM Journal on Scientific Computing 23(3), 707–740 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurganov, A., Petrova, G.: Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numerical Methods for Partial Differential Equations 21(3), 536–552 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Communications in Mathematical Sciences 5(1), 133–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. Journal of Computational Physics 146(1), 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  33. Li, S., Duffy, C.J.: Fully-coupled modeling of shallow water flow and pollutant transport on unstructured grids. Procedia Environmental Sciences 13, 2098–2121 (2012)

    Article  Google Scholar 

  34. Liang, Q.: A well-balanced and non-negative numerical scheme for solving the integrated shallow water and solute transport equations. Communications in Computational Physics 7(5), 1049–1075 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, X., Beljadid, A.: A coupled numerical model for water flow, sediment transport and bed erosion. Computers & Fluids 154, 273–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Macías, J., Castro, M.J., Escalante, C.: Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coastal Engineering 158, 103667 (2020)

    Article  Google Scholar 

  37. Macías, J., Castro, M.J., Ortega, S., González-Vida, J.M.: Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Modelling 152, 101645 (2020)

    Article  Google Scholar 

  38. Macías, J., Vázquez, J.T., Fernández-Salas, L.M., González-Vida, J.M., Bárcenas, P., Castro, M.J., Díaz-del Río, V., Alonso, B.: The Al-Borani submarine landslide and associated tsunami. A modelling approach. Marine Geology 361, 79–95 (2015)

    Article  Google Scholar 

  39. Moukalled, F., Mangani, L., Darwish, M.: ThE Finite Volume Method in Computational Fluid Dynamics, vol. 113. Springer, New York (2016)

    MATH  Google Scholar 

  40. Murillo, J., Burguete, J., Brufau, P., García-Navarro, P.: Coupling between shallow water and solute flow equations: analysis and management of source terms in 2D. International Journal for Numerical Methods in Fluids 49(3), 267–299 (2005)

    Article  MATH  Google Scholar 

  41. Murillo, J., García-Navarro, P., Burguete, J.: Analysis of a second-order upwind method for the simulation of solute transport in 2D shallow water flow. International Journal for Numerical Methods in Fluids 56(6), 661–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Murillo, J., García-Navarro, P., Burguete, J., Brufau, P.: A conservative 2D model of inundation flow with solute transport over dry bed. International Journal for Numerical Methods in Fluids 52(10), 1059–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. Journal of Computational Physics 228(4), 1071–1115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Russo, G.: Central schemes and systems of balance laws. In: Hyperbolic partial differential equations. Theory, Numerics and Applications, edited by Andreas Meister and Jens Struckmeier, Vieweg, Göttingen (2002)

  46. Shu, C.-W.: A survey of strong stability preserving high order time discretizations. Collected Lectures on the Preservation of Stability Under Discretization. SIAM, Philadelphia 109, 51–65 (2002)

  47. Stelling, G.S.: On the construction of computational methods for shallow water flow problems. (1983)

    Google Scholar 

  48. Vanzo, D., Siviglia, A., Toro, E.F.: Pollutant transport by shallow water equations on unstructured meshes: hyperbolization of the model and numerical solution via a novel flux splitting scheme. Journal of Computational Physics 321, 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vreugdenhil, C.B.: Numerical Methods for Shallow-Water Flow, vol. 13. Springer Science & Business Media, New York (2013)

    Google Scholar 

  50. Wu, G., He, Z., Zhao, L., Liu, G.: A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography. Journal of Hydrodynamics 30(4), 618–631 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and reviewers for their contribution to improve the quality of this study.

Funding

The funding for this research was provided by UM6P/OCP Group of Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Beljadid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Enrique Zuazua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karjoun, H., Beljadid, A. & LeFloch, P.G. A structure-preserving algorithm for surface water flows with transport processes. Adv Comput Math 48, 7 (2022). https://doi.org/10.1007/s10444-021-09918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09918-y

Keywords

Mathematics Subject Classification (2010)

Navigation