Skip to main content
Log in

A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct a well-balanced, positivity preserving finite volume scheme for the shallow water equations based on a continuous, piecewise linear discretization of the bottom topography. The main new technique is a special reconstruction of the flow variables in wet–dry cells, which is presented in this paper for the one dimensional case. We realize the new reconstruction in the framework of the second-order semi-discrete central-upwind scheme from (Kurganov and Petrova, Commun. Math. Sci., 5(1):133–160, 2007). The positivity of the computed water height is ensured following (Bollermann et al., Commun. Comput. Phys., 10:371–404, 2011): The outgoing fluxes are limited in case of draining cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollermann, A., Noelle, S., Lukáčová-Medvid’ová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2011)

    MathSciNet  Google Scholar 

  3. de Saint-Venant, A.J.C.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des warées dans leur lit. C. R. Acad. Sci. Paris 73, 147–154 (1871)

    MATH  Google Scholar 

  4. Gallardo, J.M., Parés, C., Castro, M.: On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas. J. Comput. Phys. 2227, 574–601 (2007)

    Article  Google Scholar 

  5. Gallouët, T., Hérard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32, 479–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. Springer, New York (1996)

    MATH  Google Scholar 

  7. Gottlieb, S., Shu, C.-W., Tadmor, E.: High order time discretization methods with the strong stability property. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, S.: A steady-state capturing method for hyperbolic system with geometrical source terms. M2AN Math. Model. Numer. Anal. 35, 631–645 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, S., Wen, X.: Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26, 2079–2101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kröner, D.: Numerical schemes for conservation laws. Wiley, Chichester (1997)

    MATH  Google Scholar 

  11. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36, 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    MathSciNet  MATH  Google Scholar 

  13. LeVeque, R.: Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  14. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, Q., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32(6), 873–884 (2009)

    Article  Google Scholar 

  16. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Morris, M.: CADAM: concerted action on dam break modelling—final report. HR Wallingford, Wallingford (2000)

    Google Scholar 

  18. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38, 201–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Russo, G.: Central schemes for balance laws. In: Hyperbolic problems: theory, numerics, applications, vols. I, II (Magdeburg, 2000), pp. 821–829. International Series of Numerical Mathematics vols. 140, 141, Birkhäuser, Basel (2001)

  23. Russo, G.: Central schemes for conservation laws with application to shallow water equations. In: Rionero, S., Romano, G. (eds.) Trends and applications of mathematics to mechanics: STAMM 2002, pp. 225–246. Springer Italia SRL, Berlin (2005)

    Chapter  Google Scholar 

  24. Singh, J., Altinakar, M.S., Ding, Y.: Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme. Adv. Water Resour. 34, 1366–1375 (2011)

    Article  Google Scholar 

  25. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Synolakis, C.E.: The runup of long waves. Ph.D. thesis, California Institute of Technology (1986)

  27. Synolakis, C.E.: The runup of solitary waves. J. Fluid Mech. 185, 523–545 (1987)

    Article  MATH  Google Scholar 

  28. Tai, Y.C., Noelle, S., Gray, J.M.N.T., Hutter, K.: Shock-capturing and front-tracking methods for granular avalanches. J. Comput. Phys. 175, 269–301 (2002)

    Article  MATH  Google Scholar 

  29. van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  30. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1, 100–134 (2006)

    MATH  Google Scholar 

  32. Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The first ideas for this work were discussed by the authors at a meeting at the “Mathematisches Forschungsinstitut Oberwolfach”. The authors are grateful for the support and inspiring atmosphere there. The research of A. Kurganov was supported in part by the NSF Grant DMS-1115718 and the ONR Grant N000141210833. The research of A. Bollermann, G. Chen and S. Noelle was supported by DFG Grant NO361/3-1 and No361/3-2. G. Chen is partially supported by the National Natural Science Foundation of China (No. 11001211, 51178359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Noelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollermann, A., Chen, G., Kurganov, A. et al. A Well-Balanced Reconstruction of Wet/Dry Fronts for the Shallow Water Equations. J Sci Comput 56, 267–290 (2013). https://doi.org/10.1007/s10915-012-9677-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9677-5

Keywords

Navigation