Skip to main content
Log in

Positivity-Preserving and Well-Balanced Adaptive Surface Reconstruction Schemes for Shallow Water Equations with Wet-Dry Fronts

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We aim to propose a robust and efficient surface reconstruction (SR) scheme for two-dimensional shallow water equations with wet-dry fronts together with adaptive moving mesh methods on irregular quadrangles. The key ingredient of the surface reconstruction is to define Riemann states based on smoothing the water surface or the bottom topography on the cell boundary. The main difficulties in using adaptive moving mesh methods for shallow water equations are to guarantee the positivity of the water depth and the stationary solution near wet-dry fronts. We use a geometrical conservative method to recover the numerical solutions from the mesh of the previous time level and prove positivity-preserving and well-balanced properties. It is a challenging work to preserve stationary solutions for the adaptive moving mesh method when the computational domain contains wet-dry fronts. To overcome this issue, we propose three steps, which consist of redefining the bottom topography on the new meshes, fixing the mesh vertex of the partially flooded cells, and avoiding the extrema of the solutions on the new meshes. The current adaptive SR schemes can maintain the still-water steady state even if the computational domain contains wet-dry fronts and guarantee the water depth to be nonnegative. We illustrate the performance of the current adaptive SR scheme using several classic experiments of two-dimensional shallow water equations with wet-dry fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56(2), 267–290 (2013)

    Article  MathSciNet  Google Scholar 

  2. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    Article  MathSciNet  Google Scholar 

  3. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bollermann, S.L.-M.M.: Andreas; Noelle, Finite volume evolution galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10(2), 371–404 (2011)

    Article  MathSciNet  Google Scholar 

  5. Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)

    Article  Google Scholar 

  6. Liu, X., Albright, J., Epshteyn, Y., Kurganov, A.: Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the saint-venant system. J. Comput. Phys. 374, 213–236 (2018)

    Article  MathSciNet  Google Scholar 

  7. Buttinger-Kreuzhuber, A., Horváth, Z., Noelle, S., Blöschl, G., Waser, J.: A new second-order shallow water scheme on two-dimensional structured grids over abrupt topography. Adv. Water Resour. 127, 89–108 (2019)

    Article  Google Scholar 

  8. Dong, J.: A robust second-order surface reconstruction for shallow water flows with a discontinuous topography and a manning friction. Adv. Comput. Math. 46(2), 1–33 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bryson, S., Epshteyn, Y., Kurganov, A., Petrova, G.: Well-balanced positivity preserving central-upwind scheme on triangular grids for the saint-venant system. ESAIM: Math. Model. Numer. Anal. 45(3), 423–446 (2011)

    Article  MathSciNet  Google Scholar 

  10. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19–41 (2013)

    Article  MathSciNet  Google Scholar 

  11. Jin, S.: A Steady-State Capturing Method for Hyperbolic Systems with Geometrical Source Terms. Springer, New York (2004)

    Book  Google Scholar 

  12. Xing, Y., Shu, C.W.: A new approach of high order well-balanced finite volume weno schemes and discontinuous galerkin methods for a class of hyperbolic systems with source. Commun. Comput. Phys. 1(1), 567–598 (2006)

    Article  MathSciNet  Google Scholar 

  13. Perthame, B., Simeoni, C.: A kinetic scheme for the saint-venant systeme’ with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MathSciNet  Google Scholar 

  14. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal. 55(2), 758–784 (2017)

    Article  MathSciNet  Google Scholar 

  15. Liang, Q., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32(6), 873–884 (2009)

    Article  Google Scholar 

  16. Xia, X., Liang, Q., Ming, X., Hou, J.: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour. Res. 53(5), 3730–3759 (2017)

    Article  Google Scholar 

  17. Li, D., Dong, J.: A robust hybrid unstaggered central and godunov-type scheme for saint-venant-exner equations with wet/dry fronts. Comput. Fluids 235, 105284 (2022)

    Article  MathSciNet  Google Scholar 

  18. Castro, M.J., de Luna, T.M., Parés, C.: Well-balanced schemes and path-conservative numerical methods. In: Handbook of Numerical Analysis, Vol. 18, pp. 131–175 (2017)

  19. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229(8), 2759–2763 (2010)

    Article  MathSciNet  Google Scholar 

  20. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008)

    Article  MathSciNet  Google Scholar 

  21. Dal Maso, G., Lefloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. de mathématiques pures et appliquées 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Delestre, O., Cordier, S., Darboux, F., James, F.: A limitation of the hydrostatic reconstruction technique for shallow water equations. C.R. Math. 350(13–14), 677–681 (2012)

    Article  MathSciNet  Google Scholar 

  23. Luna, T.M.D., Díaz, M.J.C., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219(17), 9012–9032 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Xia, X., Liang, Q.: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations. Advances in Water Resources 117

  25. Cao, W., Huang, W., Russell, R.D.: Anr-adaptive finite element method based upon moving mesh pdes. J. Comput. Phys. 149(2), 221–244 (1999)

    Article  MathSciNet  Google Scholar 

  26. Kurganov, A., Qu, Z., Rozanova, O.S., Wu, T.: Adaptive moving mesh central-upwind schemes for hyperbolic system of pdes: Applications to compressible euler equations and granular hydrodynamics. Commun. Appl. Math. Comput. 3(3), 445–479 (2021)

    Article  MathSciNet  Google Scholar 

  27. Xu, X., Ni, G., Jiang, S.: A high-order moving mesh kinetic scheme based on weno reconstruction for compressible flows on unstructured meshes. J. Sci. Comput. 57(2), 278–299 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zhou, F., Chen, G., Noelle, S., Guo, H.: A well-balanced stable generalized riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes. Int. J. Numer. Meth. Fluids 73(3), 266–283 (2013)

    Article  MathSciNet  Google Scholar 

  29. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)

    Article  Google Scholar 

  30. Tang, H., Tang, T.: Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

    Article  MathSciNet  Google Scholar 

  31. Han, J., Tang, H.: An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys. 220(2), 791–812 (2007)

    Article  MathSciNet  Google Scholar 

  32. Schneider, K.A., Gallardo, J.M., Balsara, D.S., Nkonga, B., Parés, C.: Multidimensional approximate riemann solvers for hyperbolic nonconservative systems. applications to shallow water systems. J. Comput. Phys. 444, 110547 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (No. 11971481,11901577,12071481).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Dong.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Dong, J. & Song, S. Positivity-Preserving and Well-Balanced Adaptive Surface Reconstruction Schemes for Shallow Water Equations with Wet-Dry Fronts. J Sci Comput 92, 111 (2022). https://doi.org/10.1007/s10915-022-01943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01943-3

Keywords

Mathematics Subject Classification

Navigation