Skip to main content

High-order cut finite elements for the elastic wave equation

Abstract

A high-order cut finite element method is formulated for solving the elastic wave equation. Both a single domain problem and an interface problem are treated. The boundary or interface is allowed to cut through the background mesh. To avoid problems with small cuts, stabilizing terms are added to the bilinear forms corresponding to the mass and stiffness matrix. The stabilizing terms penalize jumps in normal derivatives over the faces of the elements cut by the boundary/interface. This ensures a stable discretization independently of how the boundary/interface cuts the mesh. Nitsche’s method is used to enforce boundary and interface conditions, resulting in symmetric bilinear forms. As a result of the symmetry, an energy estimate can be made and optimal order a priori error estimates are derived for the single domain problem. Finally, numerical experiments in two dimensions are presented that verify the order of accuracy and stability with respect to small cuts.

References

  1. Abarbanel, S., Ditkowski, A.: Asymptotically stable fourth-order accurate schemes for the diffusion equation on complex shapes. J. Comput. Phys. 133(2), 279–288 (1997). http://www.sciencedirect.com/science/article/pii/S0021999197956539

    MathSciNet  Article  Google Scholar 

  2. Achenbach, J.D.: Wave propagation in elastic solids North-Holland (1973)

  3. Albright, J., Epshteyn, Y., Medvinsky, M., Xia, Q.: High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces. Appl. Numer. Math. 111, 64–91 (2017). https://doi.org/10.1016/j.apnum.2016.08.017. http://linkinghub.elsevier.com/retrieve/pii/S0168927416301672

    MathSciNet  Article  MATH  Google Scholar 

  4. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1), 84–107 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Appelö, D., Petersson, N.A.: A fourth-order accurate embedded boundary method for the wave equation. SIAM J. Sci. Comput. 34(6), A2982–A3008 (2012). http://epubs.siam.org/doi/abs/10.1137/09077223X

    MathSciNet  Article  Google Scholar 

  6. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal II library, version 8.5. J. Numer. Math 25(3), 137–146 (2017). https://doi.org/10.1515/jnma-2016-1045

    MathSciNet  Article  Google Scholar 

  7. Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348(21-22), 1217–1220 (2010). https://doi.org/10.1016/j.crma.2010.10.006

    MathSciNet  Article  MATH  Google Scholar 

  8. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: Cut FEM: discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering 104(7), 472–501 (2015). https://doi.org/10.1002/nme.4823

    MathSciNet  Article  MATH  Google Scholar 

  9. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics 62(4), 328–341 (2012). https://doi.org/10.1016/j.apnum.2011.01.008

    MathSciNet  Article  MATH  Google Scholar 

  10. De Basabe Jonás D., Sen Mrinal, K., Wheeler, M.F.: The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophysical Journal International 175(1), 83–93 (2008). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.2008.03915.x

    Article  Google Scholar 

  11. Duru, K., Virta, K.: Stable and high order accurate difference methods for the elastic wave equation in discontinuous media. Journal of Computational Physics 279, 37–62 (2014)

    MathSciNet  Article  Google Scholar 

  12. Hansbo, P., Larson, M.G., Larsson, K.: Cut finite element methods for linear elasticity problems. In: Bordas, S., Burman, E., Larson, M., Olshanskii, M. (eds.) Geometrically Unfitted Finite Element Methods and Applications, pp. 25–63, Lecture Notes in Computational Science and Engineering, vol. 121. Springer International Publishing, Cham (2017)

  13. Johansson, A., Larson, M.G., Logg, A.: High order cut finite element methods for the stokes problem. Advanced Modeling and Simulation in Engineering Sciences 2(1), 24 (2015)

    Article  Google Scholar 

  14. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, New York (1999). http://ebookcentral.proquest.com/lib/uu/detail.action?docID=241558

    MATH  Google Scholar 

  15. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972). https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

    MathSciNet  Article  Google Scholar 

  16. Langtangen, H.P., Pedersen, G.K.: Scaling of Differential Equations. Springer, Berlin Heidelberg New York (2016). http://link.springer.com/10.1007/978-3-319-32726-6

    Book  Google Scholar 

  17. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation and Applications, Text in Computational Science and Engineering vol. 10. Springer, Berlin Heidelberg (2013)

    Book  Google Scholar 

  18. Lederer, P., Pfeiler, C.M., Wintersteiger, C., Lehrenfeld, C.: Higher order unfitted FEM for Stokes interface problems. Proceedings in Applied Mathematics and Mechanics 16(1), 7–10 (2016). https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201610003

    Article  Google Scholar 

  19. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. Journal of Computational Physics 195(1), 90–116 (2004)

    MathSciNet  Article  Google Scholar 

  20. Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophysical Journal International 172(1), 252–261 (2008)

    Article  Google Scholar 

  21. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche fictitious domain method for the Stokes problem. Journal of Scientific Computing 61 (3), 604–628 (2014). https://doi.org/10.1007/s10915-014-9838-9

    MathSciNet  Article  MATH  Google Scholar 

  22. Mönkölä, S.: Numerical simulation of fluid-structure interaction between acoustic and elastic waves. Ph.D. thesis, University of Jyväskylä, Jyväskylä ISBN 978-951-39-4439-1 (2011)

  23. Nitsche, J.: Über ein Variationsprinzip zur Losung̈ von Dirichlet-Problemen bei Verwendung von Teilraumen̈, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1), 9–15 (1971). https://doi.org/10.1007/BF02995904

    MathSciNet  Article  Google Scholar 

  24. Riviere, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. Contemporary Mathematics 329, 271–282 (2003)

    MathSciNet  Article  Google Scholar 

  25. Saye, R.I.: High-Order Quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM Journal on Scientific Computing 37(2), A993–A1019 (2015). https://doi.org/10.1137/140966290

    MathSciNet  Article  MATH  Google Scholar 

  26. Sticko, S., Kreiss, G.: A stabilized Nitsche cut element method for the wave equation. Computer Methods in Applied Mechanics and Engineering 309, 364–387 (2016). https://doi.org/10.1016/j.cma.2016.06.001

    MathSciNet  Article  MATH  Google Scholar 

  27. Sticko, S., Kreiss, G.: Higher order cut finite elements for the wave equation. Journal of Scientific Computing 80(3), 1867–1887 (2019). https://doi.org/10.1007/s10915-019-01004-2

    MathSciNet  Article  MATH  Google Scholar 

  28. Tan, S., Shu, C.W.: Inverse Lax–Wendroff procedure for numerical boundary conditions of hyperbolic equations: survey and new developments. In: Melnik, R., Kotsireas, I. (eds.) Advances in Applied Mathematics, Modeling, and Computational Science, pp. 41–63, Fields Institute Communications, vol. 66. Springer US, Boston (2013)

  29. Tarantola, A.: Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8), 1259–1266 (1984)

    Article  Google Scholar 

  30. Tarantola, A.: Inversion of Travel Times and Seismic Waveforms Seismic Tomography, Pp. 135–157 Springer (1987)

  31. Tarantola, A.: Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics 128(1-2), 365–399 (1988)

    Article  Google Scholar 

  32. Virieux, J.: P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)

    Article  Google Scholar 

  33. Virta, K., Appelö, D.: Formulae and software for particular solutions to the elastic wave equation in curved geometries (2015)

  34. Zahradník, J.í., Moczo, P., Hron, F.e.: Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America 83(1), 107–129 (1993)

    Google Scholar 

Download references

Funding

Open access funding provided by Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Ludvigsson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Swedish Research Council (Grant No. 2014-6088).

Communicated by:Ivan Graham

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sticko, S., Ludvigsson, G. & Kreiss, G. High-order cut finite elements for the elastic wave equation. Adv Comput Math 46, 45 (2020). https://doi.org/10.1007/s10444-020-09785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09785-z

Keywords

  • Elastic
  • Wave
  • Cut
  • Immersed
  • Interface

Mathematics Subject Classification 2010

  • 65M60
  • 65M85