Antoulas, A. C.: Approximation of Large-Scale Dynamical Systems, Adv. Des. Control, vol. 6. SIAM Publications, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713
Book
Google Scholar
Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21 (4), 331–358 (2014). https://doi.org/10.1007/s11831-014-9111-2
MathSciNet
Article
Google Scholar
Benner, P.: Solving large-scale control problems. IEEE Control Syst Mag. 14 (1), 44–59 (2004). https://doi.org/10.1109/MCS.2004.1272745
Google Scholar
Benner, P., Himpe, C., Mitchell, T.: On reduced input-output dynamic mode decomposition. Adv. Comput. Math. 44(6), 1821–1844 (2018). https://doi.org/10.1007/s10444-018-9592-x
MathSciNet
Article
Google Scholar
Benner, P., Kürschner, P.: Computing real low-rank solutions of Sylvester equations by the factored ADI method. Comput. Math. Appl. 67(9), 1656–1672 (2014). https://doi.org/10.1016/j.camwa.2014.03.004
MathSciNet
Article
Google Scholar
Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142–162 (2014). http://etna.mcs.kent.edu/volumes/2011-2020/vol43/abstract.php?vol=43&pages=142-162
MathSciNet
MATH
Google Scholar
Benner, P., Li, R. C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009). https://doi.org/10.1016/j.cam.2009.08.108
MathSciNet
Article
Google Scholar
Bond, B. N., Daniel, L.: Guaranteed stable projection-based model reduction for indefinite and unstable linear systems. In: 2008 IEEE/ACM International Conference on Computer-Aided Design (2008). https://doi.org/10.1109/ICCAD.2008.4681657
Bru, R., Coll, C., Thome, N.: Symmetric singular linear control systems. Appl. Math. Lett. 15(6), 671–675 (2002). https://doi.org/10.1016/S0893-9659(02)00026-5
MathSciNet
Article
Google Scholar
Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. Tech. Rep. 2002–2, SLICOT Working Note. Available from http://www.slicot.org (2002)
Davidson, A.: Balanced systems and model reduction. Electron. Lett. 22(10), 531–532 (1986). https://doi.org/10.1049/el:19860362
Article
Google Scholar
Fernando, K. V., Nicholson, H.: Minimality of SISO linear systems. Proc. IEEE 70(10), 1241–1242 (1982). https://doi.org/10.1109/PROC.1982.12460
Article
Google Scholar
Fernando, K. V., Nicholson, H.: On the structure of balanced and other principal representations of SISO systems. IEEE Trans. Autom. Control 28(2), 228–231 (1983). https://doi.org/10.1109/TAC.1983.1103195
MathSciNet
Article
Google Scholar
Gardiner, J. D., Laub, A. J., Amato, J. J., Moler, C. B.: Solution of the Sylvester matrix equation AXB + CXD = E. ACM Trans. Math. Softw. 18 (2), 223–231 (1992). https://doi.org/10.1145/146847.146929
MathSciNet
Article
Google Scholar
Gugercin, S., Antoulas, A. C., Beattie, C.: \({\mathscr{H}}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008). https://doi.org/10.1137/060666123
MathSciNet
Article
Google Scholar
Himpe, C.: emgr – the Empirical Gramian Framework. Algorithms 11(7), 91 (2018). https://doi.org/10.3390/a11070091
MathSciNet
Article
Google Scholar
Himpe, C.: emgr – EMpirical GRamian framework (version 5.7) (2019). https://gramian.de. https://doi.org/10.5281/zenodo.2577980
Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018). https://doi.org/10.1137/16M1085413
MathSciNet
Article
Google Scholar
Himpe, C., Leibner, T., Rave, S., Saak, J.: Fast low-rank empirical cross Gramians. Proc. Appl. Math. Mech. 17(1), 841–842 (2017). https://doi.org/10.1002/pamm.201710388
Article
Google Scholar
Himpe, C., Ohlberger, M.: A note on the cross Gramian for non-symmetric systems. Syst. Sci. Control Eng. 4(1), 199–208 (2016). https://doi.org/10.1080/21642583.2016.1215273
Article
Google Scholar
Himpe, C., Rave, S.: HAPOD – hierarchical approximate proper orthogonal decomposition (version 2.0). https://git.io/hapod (2019)
Jiang, Y. L., Qi, Z. Z., Yang, P.: Model order reduction of linear systems via the cross Gramian and SVD. IEEE Trans. Circ. Syst. II: Express Briefs 66(3), 422–426 (2019). https://doi.org/10.1109/TCSII.2018.2864115
Google Scholar
Li, J. R., White, J.: Efficient model reduction of interconnect via approximate system Gramians. In: 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers, pp. 380–383 (1999). https://doi.org/10.1109/ICCAD.1999.810679
Li, J.R., White, J.: Reduction of large circuit models via low rank approximate Gramians. Int. J. Appl. Math. Comput. Sci. 11(5), 1151–1171 (2001). http://eudml.org/doc/207549
MathSciNet
MATH
Google Scholar
The MathWorks, Inc., http://www.matlab.com: MATLAB
Mirsky, L.: A trace inequality of John von Neumann. Monat. Math. 79(4), 303–306 (1975). https://doi.org/10.1007/BF01647331
MathSciNet
Article
Google Scholar
Moore, B. C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26(1), 17–32 (1981). https://doi.org/10.1109/TAC.1981.1102568
MathSciNet
Article
Google Scholar
Moosmann, C., Greiner, A.: Convective thermal flow problems. In: Dimension Reduction of Large-Scale Systems, vol. 45, pp. 341–343. Springer (2005). https://doi.org/10.1007/3-540-27909-1_16
Google Scholar
Opmeer, M. R., Reis, T.: A lower bound for the balanced truncation error for MIMO systems. IEEE Trans. Autom. Control 60(8), 2207–2212 (2015). https://doi.org/10.1109/TAC.2014.2368232
MathSciNet
Article
Google Scholar
Or, A. C., Speyer, J. L., Kim, J.: Reduced balancing transformations for large nonnormal state-space systems. J. Guid. Control Dyn. 35(1), 129–137 (2012). https://doi.org/10.2514/1.53777
Article
Google Scholar
Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38(1), A1–A27 (2016). https://doi.org/10.1137/140978922
MathSciNet
Article
Google Scholar
Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415(2–3), 322–343 (2006). https://doi.org/10.1016/j.laa.2006.01.007. (Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.)
MathSciNet
Article
Google Scholar
Perev, K.: The unifying feature of projection in model order reduction. Inf. Technol. Control 12(3–4), 17–27 (2016). https://doi.org/10.1515/itc-2016-0003
Google Scholar
Rahrovani, S., Vakilzadeh, M.K., Abrahamsson, T.: On Gramian-based techniques for minimal realization of large-scale mechanical systems. In: Topics in Modal Analysis, vol. 7, pp. 797–805 (2014). https://doi.org/10.1007/978-1-4614-6585-0_75
Google Scholar
Redmann, M., Kürschner, P.: An output error bound for time-limited balanced truncation. Syst. Control Lett. 121, 1–6 (2018). https://doi.org/10.1016/j.sysconle.2018.08.004
MathSciNet
Article
Google Scholar
Rowley, C. W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15(3), 997–1013 (2005). https://doi.org/10.1142/S0218127405012429
MathSciNet
Article
Google Scholar
Saak, J.: Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction. Dissertation, Technische Universität Chemnitz, Chemnitz. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642 (2009)
Shaker, H. R.: Generalized cross-Gramian for linear systems. In: Proceedings of IEEE Conf. Ind. Electron. Appl., pp. 749–751 (2012). https://doi.org/10.1109/ICIEA.2012.6360824
Shi, G., Shi, C. R. J.: Model-order reduction by dominant subspace projection: error bound, subspace computation, and circuit applications. IEEE Trans. Circ. Syst. I: Reg. Papers 52(5), 975–993 (2005). https://doi.org/10.1109/TCSI.2005.846217
MathSciNet
Article
Google Scholar
Sorensen, D. C., Antoulas, A. C.: The Sylvester equation and approximate balanced reduction. Numer. Lin. Alg. Appl. 351–352, 671–700 (2002). https://doi.org/10.1016/S0024-3795(02)00283-5
MathSciNet
Article
Google Scholar
Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signal. Syst. 16(4), 297–319 (2004). https://doi.org/10.1007/s00498-004-0141-4
MathSciNet
Article
Google Scholar
The MORwiki Community: MORwiki - Model Order Reduction Wiki. http://modelreduction.org
Toscano, R.: Structured controllers for uncertain systems. Advances in industrial control. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5188-3
Book
Google Scholar
Wang, X., Yu, M.: The error bound of timing domain in model order reduction by Krylov subspace methods. J. Circ. Syst. Comput. 27(6), 1850093 (2018). https://doi.org/10.1142/S0218126618500937
MathSciNet
Article
Google Scholar
Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570
Article
Google Scholar
Wolf, T., Panzer, H., Lohmann, B.: Gramian-based error bound in model reduction by Krylov subspace methods. IFAC Proc. Vol. (Proc. 18th IFAC World Congress) 44(1), 3587–3592 (2011). https://doi.org/10.3182/20110828-6-IT-1002.02809
Google Scholar
Wong, N.: Efficient positive-real balanced truncation of symmetric systems via cross-Riccati equations. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(3), 470–480 (2008). https://doi.org/10.1109/TCAD.2008.915534
Article
Google Scholar