Skip to main content

Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms

  • Chapter
  • First Online:
Model Reduction of Complex Dynamical Systems

Abstract

In this work, the empirical-Gramian-based model reduction methods: Empirical poor man’s truncated balanced realization, empirical approximate balancing, empirical dominant subspaces, empirical balanced truncation, and empirical balanced gains are compared in a non-parametric and in two parametric variants, via ten error measures: Approximate Lebesgue \(L_0\), \(L_1\), \(L_2\), \(L_\infty \), Hardy \(H_2\), \(H_\infty \), Hankel, Hilbert-Schmidt-Hankel, modified induced primal, and modified induced dual norms, for variants of the thermal block model reduction benchmark. This comparison is conducted via a new meta-measure for model reducibility called MORscore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically via: https://www.mathworks.com/help/matlab/ref/trapz.html.

  2. 2.

    Unstable ROMs are treated as relative error of one, \(\varepsilon = 1\), in the method’s MORscores.

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). https://doi.org/10.11588/ans.2015.100.20553

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems, vol. 6, Adv. Des. Control. SIAM Publications, Philadelphia, PA (2005). https://doi.org/10.1137/1.9780898718713

  3. Ballani, J., Kressner, D.: Reduced basis methods: from low-rank matrices to low-rank tensors. SIAM J. Sci. Comput. 38(4), A2045–A2067 (2016). https://doi.org/10.1137/15M1042784

    Article  MathSciNet  MATH  Google Scholar 

  4. Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011). https://doi.org/10.1137/090776925

    Article  MathSciNet  MATH  Google Scholar 

  5. Baur, U., Benner, P.: Parametrische Modellreduktion mit dünnen Gittern. In: Lohmann, B., Kugi, A. (eds.) Tagungsband GMA-FA 1.30, ‘Modellierung, Identifikation und Simulation in der Automatisierungstechnik’, Workshop in Anif, 24.-26.9.2008, pp. 262–271 (2008). ISBN: 978-3-9502451-1-0, available from http://csc.mpi-magdeburg.mpg.de/mpcsc/benner/pub/BaurBenner-GMA-Proceedings2008.pdf

  6. Baur, U., Benner, P., Haasdonk, B., Himpe, C., Martini, I., Ohlberger, M.: Comparison of methods for parametric model order reduction of time-dependent problems. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, pp. 377–407. SIAM (2017). https://doi.org/10.1137/1.9781611974829.ch9

  7. Benner, P., Gugercin, S., Willcox, K.: A survey of model reduction methods for parametric systems. SIAM Rev. 57(4), 483–531 (2015). https://doi.org/10.1137/130932715

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Himpe, C.: Cross-Gramian-based dominant subspaces. Adv. Comput. Math. 45(5), 2533–2553 (2019). https://doi.org/10.1007/s10444-019-09724-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Benner, P., Werner, S.W.R.: MORLAB – Model Order Reduction LABoratory (version 5.0), 2019. see also: http://www.mpi-magdeburg.mpg.de/projects/morlab. https://doi.org/10.5281/zenodo.3332716

  10. Boyd, S., Barratt, C.: Linear Controller Design: Limits and Performance. Prentice-Hall (1991)

    Google Scholar 

  11. Bui-Thanh, T., Willcox, K.: Model reduction for large-scale CFD applications using balanced proper orthogonal decomposition. In: 17th AIAA Computational Fluid Dynamics Conference, pp. 1–15 (2005). https://doi.org/10.2514/6.2005-4617

  12. Bullen, P.S.: Handbook of Means and Their Inequalities, vol. 560, Mathematics and Its Applications. Springer (2003). https://doi.org/10.1007/978-94-017-0399-4

  13. Curtis, F.E., Mitchell, T., Overton, M.L.: A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim. Methods Softw. 32(1), 148–181 (2017). https://doi.org/10.1080/10556788.2016.1208749

    Article  MathSciNet  MATH  Google Scholar 

  14. Davidson, A.: Balanced systems and model reduction. Electron. Lett. 22(10), 531–532 (1986). https://doi.org/10.1049/el:19860362

    Article  Google Scholar 

  15. Enns, D.F.: Model reduction with balanced realizations: an error bound and a frequency weighted generalization. In: Proceedings of the 23rd IEEE Conference on Decision and Control, vol. 23, pp. 127–132 (1984). https://doi.org/10.1109/CDC.1984.272286

  16. Fernandez, T., Djouadi, S.M., Foster, J.: Empirical Hankel norm model reduction with application to a prototype nonlinear convective flow. In: Proceedings of the American Control Conference, pp. 3771–3776 (2010). https://doi.org/10.1109/ACC.2010.5531560

  17. Fernando, K.V., Nicholson, H.: Singular perturbational model reduction of balanced systems. IEEE Trans. Autom. Control 27(2), 466–468 (1982). https://doi.org/10.1109/TAC.1982.1102932

    Article  MATH  Google Scholar 

  18. Fernando, K.V., Nicholson, H.: On the structure of balanced and other principal representations of SISO systems. IEEE Trans. Autom. Control 28(2), 228–231 (1983). https://doi.org/10.1109/TAC.1983.1103195

    Article  MathSciNet  MATH  Google Scholar 

  19. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L\(^\infty \)-error norms. Internat. J. Control 39(6), 1115–1193 (1984). https://doi.org/10.1080/00207178408933239

    Article  MathSciNet  MATH  Google Scholar 

  20. Glover, K.: Model reduction: a tutorial on Hankel-norm methods and lower bounds on \(L^2\) errors. In: IFAC Proceedings Volume (10th Triennial IFAC Congress on Automatic Control), vol. 20(5), pp. 293–298 (1987). https://doi.org/10.1016/S1474-6670(17)55515-9

  21. Glover, K., Partington, J.R.: Bounds on the achievable accuracy in model reduction. In: Curtain, R.F. (ed.) Modelling, Robustness and Sensitivity Reduction in Control Systems, vo. 30, NATO ASI Series (Series F: Computer and Systems Sciences), pp. 95–118. Springer (1987). https://doi.org/10.1007/978-3-642-87516-8_7

  22. Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T.: Computing surrogates for gas network simulation using model order reduction. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization, pp. 189–212. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7551-4_9

  23. Halvarsson, B.: Comparison of some Gramian based interaction measures. In: 2008 IEEE Int Symposium on Computer-Aided Control System Design, pp. 128–143 (2008). https://doi.org/10.1109/CACSD.2008.4627362

  24. Hanzon, B.: The area enclosed by the (oriented) Nyquist diagram and the Hilbert-Schmidt-Hankel norm of a linear system. IEEE Trans. Autom. Control 37(6), 835–839 (1992). https://doi.org/10.1109/9.256345

    Article  MathSciNet  MATH  Google Scholar 

  25. Himpe, C.: Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience. Ph.D. thesis, Westfälische Wilhelms-Universität Münster, 2017. Sierke Verlag Göttingen, ISBN 9783868448818. https://doi.org/10.14626/9783868448818

  26. Himpe, C.: emgr - the empirical Gramian framework. Algorithms 11(7), 91 (2018). https://doi.org/10.3390/a11070091

    Article  MathSciNet  MATH  Google Scholar 

  27. Himpe, C.: emgr – EMpirical GRamian framework (version 5.7). https://gramian.de (2019). https://doi.org/10.5281/zenodo.2577980

  28. Himpe, C., Ohlberger, M.: A unified software framework for empirical Gramians. J. Math. 1–6, 2013 (2013). https://doi.org/10.1155/2013/365909

    Article  MathSciNet  MATH  Google Scholar 

  29. Himpe, C., Ohlberger, M.: Cross-Gramian based combined state and parameter reduction for large-scale control systems. Math. Prob. Eng. 2014, 843869 (2014). https://doi.org/10.1155/2014/843869

    Article  MathSciNet  MATH  Google Scholar 

  30. Himpe, C., Ohlberger, M.: The empirical cross Gramian for parametrized nonlinear systems. In: IFAC-PapersOnLine (Proceedings of the 8th Vienna International Conference on Mathematical Modelling), vol. 48(1), pp. 727–728 (2015). https://doi.org/10.1016/j.ifacol.2015.05.163

  31. Himpe, C., Ohlberger, M.: A note on the cross Gramian for non-symmetric systems. Syst. Sci. Control Eng. 4(1), 199–208 (2016). https://doi.org/10.1080/21642583.2016.1215273

    Article  Google Scholar 

  32. Arash (https://math.stackexchange.com/users/92185/arash). Geometric mean limit of \(\ell _p\) norm of sums. Mathematics Stack Exchange, 2013. (version: 2013-09-13). https://math.stackexchange.com/q/492953

  33. Jiang, Y.-L., Qi, Z.-Z., Yang, P.: Model order reduction of linear systems via the cross Gramian and SVD. IEEE Trans. Circuits Syst. II: Express Briefs 66(3), 422–426 (2019). https://doi.org/10.1109/TCSII.2018.2864115

    Article  Google Scholar 

  34. Kalman, R.E.: Contributions to the theory of optimal control. Boletin Sociedad Matematica Mexicana 5, 102–119 (1960). http://liberzon.csl.illinois.edu/teaching/kalman_paper.pdf

  35. Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Control Optim. 1, 182–192 (1963). https://doi.org/10.1137/0301010

    Article  MathSciNet  Google Scholar 

  36. Lall, S., Marsden, J.E., Glavaški, S.: Empirical model reduction of controlled nonlinear systems. In: IFAC Proceedings Volumes (14th IFAC World Congress), vol. 32(2), pp. 2598–2603 (1999). https://doi.org/10.1016/S1474-6670(17)56442-3

  37. Lam, J., Anderson, B.D.O.: L\(_1\) impulse response error bound for balanced truncation. Syst. Control Lett. 18(2), 129–137 (1992). https://doi.org/10.1016/0167-6911(92)90017-M

    Article  MATH  Google Scholar 

  38. Liu, W.Q., Sreeram, V., Teo, K.L.: Model reduction and \({H}_\infty \) norm computation for state-space symmetric systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 2195–2200 (1998). https://doi.org/10.1109/CDC.1998.758666

  39. Milk, R., Rave, S., Schindler, F.: pyMOR - generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38(5), S194–S216 (2016). https://doi.org/10.1137/15M1026614

    Article  MathSciNet  MATH  Google Scholar 

  40. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC–26(1), 17–32 (1981). https://doi.org/10.1109/TAC.1981.1102568

  41. Obinata, G., Anderson, B.D.O.: Model Reduction for Control System Design. Communications and Control Engineering. Springer, London, UK (2001). https://doi.org/10.1007/978-1-4471-0283-0

  42. Or, A.C., Speyer, J.L., Kim, J.: Reduced balancing transformations for large nonnormal state-space systems. J. Guid. Control Dyn. 35(1), 129–137 (2012). https://doi.org/10.2514/1.53777

    Article  Google Scholar 

  43. Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415(2–3), 322–343 (2006). (Reprint of Technical Report SFB393/99-40, TU Chemnitz, 1999.). https://doi.org/10.1016/j.laa.2006.01.007

  44. Pernebo, L., Silverman, L.M.: Model reduction via balanced state space representations. IEEE Trans. Autom. Control 27(2), 382–387 (1982). https://doi.org/10.1109/TAC.1982.1102945

    Article  MathSciNet  MATH  Google Scholar 

  45. Phillips, J.R., Silveira, L.M.: Poor man’s TBR: a simple model reduction scheme. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 24(1), 43–55 (2005). https://doi.org/10.1109/TCAD.2004.839472

  46. Rahrovani, S., Vakilzadeh, M.K., Abrahamsson, T.: On Gramian-based techniques for minimal realization of large-scale mechanical systems. Top. Modal Anal. 7, 797–805 (2014). https://doi.org/10.1007/978-1-4614-6585-0_75

    Article  Google Scholar 

  47. Rave, S., Saak, J.: A non-stationary thermal-block benchmark model for parametric model order reduction. In: Benner, P., et al. (eds.) Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics, p. 171. https://doi.org/10.1007/978-3-030-72983-7_16

  48. Saak, J., Köhler, M., Benner, P.: M-M.E.S.S.-2.0 – the matrix equations sparse solvers library, August 2019. see also: https://www.mpi-magdeburg.mpg.de/projects/mess. https://doi.org/10.5281/zenodo.3368844

  49. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced model reduction. In: Proceedings of the American Control Conference, pp. 1036–1040 (1988). https://doi.org/10.23919/ACC.1988.4789873

  50. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34(7), 729–733 (1989). https://doi.org/10.1109/9.29399

    Article  MathSciNet  MATH  Google Scholar 

  51. Schelfhout, G.: Model Reduction for Control Design. Ph.D. Thesis, Dept. Electrical Engineering, KU Leuven, 3001 Leuven–Heverlee, Belgium (1996)

    Google Scholar 

  52. Schuler, S., Ebenhauer, C., Allgöwer, F.: \(\ell _0\)-system gain and \(\ell _1\)-optimal control. In: IFAC Proceedings Volumes (18th IFAC World Congress), vol. 44(1), pp. 9230–9235 (2011). https://doi.org/10.3182/20110828-6-IT-1002.00755

  53. Shi, G., Shi, C.-R.J.: Model-order reduction by dominant subspace projection: error bound, subspace computation, and circuit applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 52(5), 975–993 (2005). https://doi.org/10.1109/TCSI.2005.846217

    Article  MathSciNet  MATH  Google Scholar 

  54. Sorensen, D.C., Antoulas, A.C.: The Sylvester equation and approximate balanced reduction. Numer. Lin. Alg. Appl. 351–352, 671–700 (2002). https://doi.org/10.1016/S0024-3795(02)00283-5

    Article  MathSciNet  MATH  Google Scholar 

  55. The MORwiki Community. MORwiki - Model Order Reduction Wiki. http://modelreduction.org

  56. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state-space system. Internat. J. Control 46(4), 1319–1330 (1987). https://doi.org/10.1080/00207178708933971

    Article  MathSciNet  MATH  Google Scholar 

  57. Toscano, R.: Structured Controllers for Uncertain Systems. Advances in Industrial Control. Springer London (2013). https://doi.org/10.1007/978-1-4471-5188-3

  58. Varga, A.: Minimal realization procedures based on balancing and related techniques. In: Pichler, F., Diaz, R.M. (eds.) Computer Aided Systems Theory – EUROCAST’91, vol. 585, Lecture Notes in Computer Science, pp. 733–761. Springer (1991). https://doi.org/10.1007/BFb0021056

  59. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570

    Article  Google Scholar 

  60. Wilson, D.A.: The Hankel operator and its induced norms. Internat. J. Control 42(1), 65–70 (1985). https://doi.org/10.1080/00207178508933346

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Supported by the German Federal Ministry for Economic Affairs and Energy (BMWi), in the joint project: “MathEnergy—Mathematical Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction (Grant number: 0324019B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Himpe .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Single Parameter Benchmark MORscores

Table 2 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the single parameter benchmark (\(L_1 \otimes X\))
Table 3 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the single parameter benchmark (\(L_2 \otimes X\))
Table 4 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the single parameter benchmark (\(L_\infty \otimes X\))

1.2 Multi Parameter Benchmark MORscores

Table 5 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the multi parameter benchmark (\(L_1 \otimes X\))
Table 6 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the multi parameter benchmark (\(L_2 \otimes X\))
Table 7 MORscore \(\mu (50,\epsilon _{\text {mach}}(\text {dp})\)) for the multi parameter benchmark (\(L_\infty \otimes X\))

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Himpe, C. (2021). Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms. In: Benner, P., Breiten, T., Faßbender, H., Hinze, M., Stykel, T., Zimmermann, R. (eds) Model Reduction of Complex Dynamical Systems. International Series of Numerical Mathematics, vol 171. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-72983-7_7

Download citation

Publish with us

Policies and ethics