Skip to main content
Log in

Theoretical and computational analysis of a nonlinear Schrödinger problem with moving boundary

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate some mathematical and numerical aspects of a one-dimensional nonlinear Schrödinger problem defined in a noncylindrical domain. By a change of variable, we transform the original problem into an equivalent one defined in a cylindrical domain. To obtain the existence and uniqueness of the solution, we apply the Faedo-Galerkin method and results of compactness. The numerical simulation is performed by means of the finite element method in the associated space and the finite difference method in the temporal part, to get an approximate numerical solution. In addition, we will make an analysis of the rate of convergence of the applied methods. Finally, we will show that the results of the numerical simulation are in agreement with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, R.M.P., Duque, J.C.M., Ferreira, J., Robalo, R.J.: Finite element schemes for a class of nonlocal parabolic systems with moving boundaries. J. Appl. Numer. Math. 127, 226–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cannarsa, P., Da Prato, G., Zolesio, J.P.: The damped wave equation in a moving domain. J. Differ. Equ. 85(1), 1–16 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cazenave, T.: Semilinear Schrödinger Equations, vol. 10. AMS, New York (2003)

    MATH  Google Scholar 

  4. Ciarlet, F.G.: The Finite Element Method for Elliptic Problems, vol. 40. SIAM, Paris (2002)

    Book  Google Scholar 

  5. Clark, H.R., Rincon, M.A., Rodrigues, R.D.: Beam equation with weak-internal damping in domain with moving boundary. J. Appl. Numer. Math. 47(2), 139–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalfovo, F., Giorgini, S.: Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999)

    Article  Google Scholar 

  7. Hartree, D.: The wave mechanics of an atom with a non-coulomb central field. Part i. Theory and methods. Proc. Camb. Philos. Soc. 24, 89–132 (1968)

    Article  Google Scholar 

  8. Ignat, L.I., Zuazua, E.: Convergence rates for dispersive approximation schemes to nonlinear schrodinger equations. Journal de Mathé,matiques Pures et Appliquées 98(5), 479–517 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Inoue, A.: Sur \(\square {u} + u^{3} = f\) dans un domaine noncylindrique. J. Math. Anal. Appl. 46(3), 777–819 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jina, J., Wu, X.: Analysis of finite element method for one-dimensional time-dependent schrodinger equation on unbounded domain. J. Comput. Appl. Math. 220, 240–256 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)

    Article  Google Scholar 

  12. Lions, J.L.: Quelques méthodes de résolutions des problémes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  13. Liu, I.S., Rincon, M.A.: Effect of moving boundaries on the vibrating elastic string. Appl. Numer. Math. 47, 159–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Medeiros, L.A., Miranda, M.M.: Contrôllabilité exacte de l’équation de schrodinger dans des domaines non cylindriques. CR Acad. Sci. 319, 685–689 (1994)

    MATH  Google Scholar 

  15. Medeiros, L.A., Miranda, M.M.: Exact controllability for schrödinger equations in non cylindrical domains: 41o seminário brasileiro de análise. Rev Mat Apl (1995)

  16. Rincon, M.A., Lacerda, M.O.: Error analysis of thermal equation with moving ends. J. Math. Comput. Simul. 80, 2200–2215 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Bright matter wave solitons in bose-einstein condensates. New J. Phys. 8(73), 1–73 (2003)

    Google Scholar 

  18. Thomée, V: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational mathematics. 2nd edn., vol. 25. Springer, Rio de Janeiro (2006)

  19. Wang, T.: Uniform point-wise error estimates of semi-implicit compact finite difference methods for the nonlinear schrodinger equation perturbed by wave operator. J. Comput. Appl. Math. 422, 286–308 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Wheeler, M.F.: A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10(4), 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author Rincon, M.A acknowledge the partial support from research fellowship of CNPq, Brazil. We would like to thank Prof. L. A. Medeiros, for the suggestions and collaboration in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele C. R. Gomes.

Additional information

Communicated by: Alexander Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, D.C.R., Rincon, M.A., Silva, M.D.G.d. et al. Theoretical and computational analysis of a nonlinear Schrödinger problem with moving boundary. Adv Comput Math 45, 981–1004 (2019). https://doi.org/10.1007/s10444-018-9643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9643-3

Keywords

Mathematics Subject Classification (2010)

Navigation