Skip to main content
Log in

A new numerical scheme for the nonlinear Schrödinger equation with wave operator

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a new compact finite difference scheme is proposed for a periodic initial value problem of the nonlinear Schrödinger equation with wave operator. This is an explicit scheme of four levels with a discrete conservation law. The unconditional stability and convergence in maximum norm with order \(O(h^{4}+\tau ^{2})\) are verified by the energy method. Those theoretical results are proved by a numerical experiment and it is also verified that this scheme is better than the previous scheme via comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsunchi, K.: Nonlinear interactions of counter-travelling waves. J. Phys. Soc. Jpn. 48(5), 1746–1754 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Salah, M., Do\(\acute{\rm g}\)an, K.: A numerical solution and an exact explicit solution of the NLS equation. Appl. Math. Comput. 172, 1315–1322 (2006)

  3. Athanassios, B., Matthias, E., Ioannis, T.: A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations. Appl. Math. Comput. 197, 190–205 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractal 37, 1136–1142 (2008)

    Article  MATH  Google Scholar 

  5. He, J.H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  6. He, J.H.: Variational iteration method some recent results and new interpretations. J. Comput. Appl. Math. 207, 3–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sadighi, A., Ganji, D.D.: Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 372, 465–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  9. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractal 26, 695–700 (2005)

    Article  MATH  Google Scholar 

  10. Borhanifar, A., Abazari, R.: Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method. Opt. Commun. 283, 2026–2031 (2010)

    Article  MATH  Google Scholar 

  11. Zhou, J.K.: Differential transformation and its application for electrical circuits. Huazhong University Press, Wuhan (1986)

    Google Scholar 

  12. Fatoorehchi, H., Abolghasemi, H.: Approximating the minimum reflux ratio of multicomponent distillation columns based on the Adomian decomposition method. J. Taiwan Inst. Chem. Eng. 45, 880–886 (2014)

    Article  Google Scholar 

  13. Fatoorehchi, H., Abolghasemi, H.: Investigation of nonlinear problems of heat conduction in tapered cooling fins via symbolic programming. Appl. Appl. Math. 7(2), 717–734 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Fatoorehchi, H., Abolghasemi, H.: Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl. Math. Model. 39, 6021–6031 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fatoorehchi, H., Abolghasemi, H.: An accurate explicit form of the Hankinson–Thomas–Phillips correlation for prediction of the natural gas compressibility factor. J. Pet. Sci. Eng. 117, 46–53 (2014)

    Article  Google Scholar 

  16. Fatoorehchi, H., Abolghasemi, H.: The variational iteration method for theoretical investigation of falling film absorbers. Natl. Acad. Sci. Lett. 38(1), 67–70 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fatoorehchi, H., Abolghasemi, H.: Analytical solution to intra-phase mass transfer in falling film contactors via homotopy perturbation method. Int. Math. Forum 6, 3315–3321 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Fatoorehchi, H., Abolghasemi, H.: Improving the differential transform method: a novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials. Appl. Math. Model. 37, 6008–6017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fatoorehchi, H., Abolghasemi, H.: Computation of analytical Laplace transforms by the differential transform method. Math. Comput. Model. 56, 145–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fatoorehchi, H., Abolghasemi, H.: An integration-free method for inversion of Laplace transforms: a useful tool for process control analysis and design. Chem. Eng. Commun. (2015). doi:10.1080/00986445.2015.1107722

  21. Guo, B.L., Li, H.X.: On the problem of numerical calculation for a class of the system of nonlinear Schrödinger equations with wave operator. J. Numer. Methods Comput. Appl. 4, 258–263 (1983)

    Google Scholar 

  22. Zhang, F., Peréz-Ggarcía, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger equation system: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Chang, Q.S., Xu, L.: A numerical method for a system of generalized nonlinear Schrödinger equation. J. Comput. Math. 4, 191–199 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Chang, Q.S., Jia, E.H., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, L.M., Chang, Q.S.: A new difference scheme for regularized long-wave equation. Numer. Comput. Comput. Appl. Chin. J. 4, 247–254 (2000)

    Google Scholar 

  26. Zhang, F., Vázquez, L.: Two energy conserving numerical schemes for the sine-Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wong, Y.S., Chang, Q.S., Gong, L.E.: An initial-boundary value problem of a nonlinear Klein–Gordon equation. Appl. Math. Comput. 84, 77–93 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Chang, Q.S., Jiang, H.: A conservative scheme for the Zakharov equation. J. Comput. Phys. 113, 309–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, L.M., Li, X.G.: A conservative finite difference scheme for a class of nonlinear Schrödinger equation with wave operator. Acta Math. Sci. 22A(2), 258–263 (2002)

    MATH  Google Scholar 

  30. Zhang, L.M., Chang, Q.S.: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 145, 603–612 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Wang, T.C., Zhang, L.M.: Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 182, 1780–1794 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Wang, T.C., Zhang, L.M., Chen, F.Q.: Conservative difference scheme based on numerical analysis for nonlinear Schrödinger equation with wave operator. Trans. Nanjing Univ. Aeronaut. Astronaut. 23(2), 87–93 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Wang, T.C., Guo, B.L.: Unconditional convergence of two conservative compact difference schemes for nonlinear Schrödinger equation in one dimension. Sci. Sin. Math. Chin. J. 41(3), 207–233 (2011)

    Google Scholar 

  34. Li, X., Zhang, L.M., Wang, S.S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Guo, B.L., Paseual, P.J., Rodriguez, M.J., Vázquez, L.: Numerical solution of the sine-Gorden equation. Appl. Math. Comput. 18, 1–14 (1986)

    MathSciNet  Google Scholar 

  36. Chan, T., Shen, L.: Stability analysis of difference schemes for variable coefficient Schrödinger type equations. SIAM J. Numer. Anal. 24, 336–349 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks and gratitude to the editors and reviewers for their insightful comments and suggestions for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Additional information

This work is supported by the Natural Science Foundation of Anhui Province (No. 1508085QB41) and the University Natural Science Research key Project of Anhui Province (No. KJ2015A242).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, L. & Zhang, T. A new numerical scheme for the nonlinear Schrödinger equation with wave operator. J. Appl. Math. Comput. 54, 109–125 (2017). https://doi.org/10.1007/s12190-016-1000-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1000-4

Keywords

Navigation