Skip to main content
Log in

Effect of Exposure Time to UV Radiation on Mechanical Properties of Glass/Epoxy Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Glass Fiber Reinforced Polymer (GFRP) is commonly used in outdoor applications that expose it to environmental conditions capable of degrading its properties, notably ultraviolet (UV) radiation. In this study, we subjected GFRP to UV radiation for a duration of up to 180 days in an accelerated aging chamber. The composites underwent mechanical testing through tensile and flexural evaluations, while chemical and physical changes in the composite were assessed using Fourier-Transform Infrared Spectroscopy, Thermogravimetric analysis, and optical microscopy. Tensile tests revealed a noticeable reduction in GFRP strength after just one month of UV exposure, with a decrease of 18.7% observed at 90 days of exposure. In contrast, the behavior of the composite under flexural testing showed an initial improvement in strength after 30 days of UV exposure, with a significant increase of 54.1%. With longer exposure times, flexural strength gradually decreased but remained 18.9% higher than the strength of the unaged composite after 180 days of UV exposure. Other characterizations indicated material degradation, marked by phenomena such as photo-oxidation, composite yellowing, and the appearance of microcracks on the surface. These factors collectively contribute to the reduction in composite strength. Despite the visible degradation, the aged composite may exhibit improvements attributed to post-curing. However, over more extended periods, it may experience a decline in mechanical properties. Consequently, longer degradation times may unveil a behavior pattern distinct from what is observed during shorter periods, contingent upon the specific mechanical load under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fernández-Cañadas, L.M., Ivañez, I., Sanchez-Saez, S., Barbero, E.J.: Effect of adhesive thickness and overlap on the behavior of composite single-lap joints. Mech. Adv Mater Struct. 28(11), 1111–1120 (2021)

    Article  Google Scholar 

  2. Banea, M.D., Rosioara, M., Carbas, R.J.C., Da Silva, L.F.M.: Multi-material adhe. Joints for automotive ind. Compos. B: Eng. 151, 71–77 (2018)

    Article  CAS  Google Scholar 

  3. Lohani, S., Prusty, R.K., Ray, B.C.: Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites. Mater. Today: Proc., 43, 524–529 (2021)

  4. Hota, G., Barker, W., Manalo, A.: Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging. Constr. Build. Mater. 256, 119462 (2020)

    Article  CAS  Google Scholar 

  5. Gualberto, H.R., Amorim, F.C., Costa, H.R.M.: A review of the relationship between design factors and environmental agents regarding adhesive bonded joints. J. Braz Soc. Mech. Sci. Eng. 43(8), 1–19 (2021)

    Article  Google Scholar 

  6. Gualberto, H.R., Reis, J.M.L., Andrade, M.C., Costa, H.R.M., Amorim, F.C.: Influence of artificial UV degradation on the performance of steel/GFRP single-lap joints during exposure time. J. Adhes. 1–20 (2023)

  7. Samali, B., Shadan, P., Saeed, N.: Bond degradation at environmentally exposed FRP-strengthened steel elements: State of the art. Compos. C: Open. Access. 100374 (2023)

  8. Chennareddy, R., Tuwair, H., Kandil, U.F., ElGawady, M., Taha, M.R.: UV-resistant GFRP composite using carbon nanotubes. Constr. Build. Mater. 220, 679–689 (2019)

    Article  CAS  Google Scholar 

  9. Bazli, M., Jafari, A., Ashrafi, H., Zhao, X.L., Bai, Y., Raman, R.S.: Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Constr. Build. Mater. 231, 117137 (2020)

    Article  CAS  Google Scholar 

  10. Shokrieh, M.M., Bayat, M.M.: Effects of ultraviolet radiation on mechanical properties of glass/polyester composites. J. Compos. Mater. 41(20), 2443–2455 (2007)

    Article  CAS  Google Scholar 

  11. Wu, C., Meng, B.C., Tam, L.H., He, L.: Yellowing mechanisms of epoxy and vinyl ester resins under thermal, UV and natural aging conditions and protection methods. Polym. Test. 114, 107708 (2022)

    Article  CAS  Google Scholar 

  12. Guermazi, N., Tarjem, A.B., Ksouri, I., Ayedi, H.F.: On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. B: Eng. 85, 294–304 (2016)

    Article  CAS  Google Scholar 

  13. Jiang, X., Kolstein, H., Bijlaard, F., Qiang, X.: Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics. Compos. A: Appl. Sci. Manuf. 57, 49–58 (2014)

    Article  CAS  Google Scholar 

  14. Pillay, S., Vaidya, U.K., Janowski, G.M.: Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates. Compos. Sci. Technol. 69(6), 839–846 (2009)

    Article  CAS  Google Scholar 

  15. Woo, R.S., Chen, Y., Zhu, H., Li, J., Kim, J.K., Leung, C.K.: Environmental degradation of epoxy–organoclay nanocomposites due to UV exposure. Part I: Photo-degradation. Compos. Sci. Technol. 67(15–16), 3448–3456 (2007)

    Article  CAS  Google Scholar 

  16. Stankiewicz, B.: The resistance to UV radiation for GFRP pultruded bridge panels. Adv. Mater. Letters 13(3), (2022)

  17. Barbosa, A.P.C., Fulco, A.P.P., Guerra, E.S., Arakaki, F.K., Tosatto, M., Costa, M.C.B., Melo, J.D.D.: Accelerated aging effects on carbon fiber/epoxy composites. Comp. B: Eng. 110, 298 (2017)

    Article  Google Scholar 

  18. da Rocha, M.L., Leite, M.C.O., Ferreira, P.C.E., Melo, J.D., Barbosa, A.P.C.: Accelerated aging effects in composites used as repair for pipes in oil industry. Polym. Compos. 42(11), 5918–5929 (2021)

    Article  Google Scholar 

  19. da Silva, L.V., de Menezes, E.A.W., Tarpani, J.R., Amico, S.C.: Accelerated Ageing effects on Short-Beam Strength Behavior of Pultruded CFRP rods. Appl. Compo Mater. 29(2), 855–869 (2022)

    Article  Google Scholar 

  20. Alsaadi, M., Erkliğ, A.: UV accelerated aging and sewage sludge ash particle effects on mode I interlaminar fracture properties of glass fiber/epoxy composites. Iran. Polym. J. 30(8), 811–820 (2021)

    Article  CAS  Google Scholar 

  21. Chauhan, A., Bedi, H.S., Agnihotri, P.K.: Enhancing aging resistance of glass fiber/epoxy composites using carbon nanotubes. Mater. Chem. Phys. 291, 126740 (2021)

    Article  Google Scholar 

  22. Therias, S., Rapp, G., Masson, C., Gardette, J.L.: Limits of UV-light acceleration on the photooxidation of low-density polyethylene. Polym. Degrad. And Stab. 183, 109443 (2021)

    Article  CAS  Google Scholar 

  23. Sutter, F., Fernandez-García, A., Wette, J., Heller, P.: Comparison and evaluation of accelerated aging tests for reflectors. Ener Proced. 49, 1718–1727 (2014)

    Article  Google Scholar 

  24. Avenel, C., Raccurt, O., Gardette, J.L., Therias, S.: Review of accelerated ageing test modelling and its application to solar mirrors. Solar Ener. Mater. Solar Cells. 186, 29–41 (2018)

    Article  CAS  Google Scholar 

  25. Tanks, J., Naito, K.: UV durability assessment of a thermoplastic epoxy-based hybrid composite rod for structural reinforcement and retrofitting. J. Build. Eng. 48, 103922 (2022)

    Article  Google Scholar 

  26. Manalo, A., Alajarmeh, O., Ferdous, W., Benmokrane, B., Sorbello, C.D., Gerdes, A.: Effect of simulated hygrothermal environment on the flexural and interlaminar shear strength of particulate-filled epoxy-coated GFRP composites. Constr. Build. Mater. 339, 127687 (2022)

    Article  CAS  Google Scholar 

  27. Doğan, A., Arman, Y.: The effect of hygrothermal aging on the glass and carbon reinforced epoxy composites for different stacking sequences. Mechanics. 24(1), 19–25 (2018)

    Article  Google Scholar 

  28. ASTM D904-99: Standard Practice for Exposure of Adhesive Specimens to Artificial Light. West Conshohocken, PA, ASTM International (1999)

    Google Scholar 

  29. ASTM G154-00a: Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials. ASTM International, West Conshohocken, PA (2000)

    Google Scholar 

  30. Gualberto, H.R., Amorim, F.C., Costa, H.R.M., Faria, D.S.: Projeto De Câmara De Degradação Ultravioleta De Baixo Custo. VETOR - Revista De Ciências Exatas E Engenharias. 33(1), 105–113 (2023)

    Article  Google Scholar 

  31. ASTM D3039-14: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA (2014)

    Google Scholar 

  32. ASTM D790-03: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA (2003)

    Google Scholar 

  33. Belec, L., Nguyen, T.H., Nguyen, D.L., Chailan, J.F.: Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano-to macro-scale. Compos. A: Appl. Sci. Manuf. 61(23), (2015)

  34. Dogan, A., Arman, Y., Ozdemir, O.: Experimental investigation of transverse loading on composite panels coated with different gelcoat colors subjected to UV radiation and hygrothermal aging. Mater Res. Express. 6(2), 025301 (2018)

    Article  Google Scholar 

  35. Yan, L., Chouw, N., Krishnan, J.: Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications. Mater Des. 71, 17–25 (2015)

    Article  CAS  Google Scholar 

  36. Dogan, A., Arman, Y.: The effect of hygrothermal aging and UV radiation on the low-velocity impact behavior of the glass fiber-reinforced epoxy composites. Iran. Polym. J. 28, 193–201 (2019)

    Article  CAS  Google Scholar 

  37. Nguyen, T.C., Bai, Y., Zhao, X.L., Al-Mahaidi, R.: Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints. Compos. Struct. 94(12), 3563–3573 (2012)

    Article  Google Scholar 

  38. Khan, Z.I., Mohamad, Z., Rahmat, A.R., Habib, U.: Synthesis and characterization of Composite materials with enhanced Thermo-Mechanical properties for Unmanned Aerial vehicles (uavs) and Aerospace technologies. Pertanika J. Sci. Tech. 29(3) (2021)

  39. Liu, T., Liu, X., Feng, P.: A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. B: Eng. 191, 107958 (2020)

    Article  CAS  Google Scholar 

  40. Guermazi N, Tarjem AB, Ksouri I, Ayedi HF (2016) On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos B: Eng 85:294–304

    Article  CAS  Google Scholar 

  41. Ellyin, F., Maser, R.: Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos. Sci. Technol. 64(12), 1863–1874 (2004)

    Article  CAS  Google Scholar 

  42. Korkmaz, Y., Gültekin, K.: Effect of uv irradiation on epoxy adhesives and adhesively bonded joints reinforced with bn and b4c nanoparticles. Polym. Degrad. Stab. 110004 (2022)

  43. Ashrafi, H., Bazli, M., Vatani Oskouei, A., Bazli, L.: Effect of sequential exposure to UV radiation and water vapor condensation and extreme temperatures on the mechanical properties of GFRP bars. J. Compo Constr. 22(1), 04017047 (2018)

    Article  Google Scholar 

  44. Sousa, J.M., Correia, J.R., Cabral-Fonseca, S.: Durability of glass fibre reinforced polymer pultruded profiles: Comparison between QUV accelerated exposure and natural weathering in a Mediterranean climate. Exp. Tech. 40, 207–221 (2016)

    Article  Google Scholar 

  45. Khotbehsara, M.M., Manalo, A., Aravinthan, T., Ferdous, W., Benmokrane, B., Nguyen, K.T.: Synergistic effects of hygrothermal conditions and solar ultraviolet radiation on the properties of structural particulate-filled epoxy polymer coatings. Constr. Build. Mater. 277, 122336 (2021)

    Article  CAS  Google Scholar 

  46. Bazli, M., Zhao, X.L., Jafari, A., Ashrafi, H., Bai, Y., Raman, R.S., Khezrzadeh, H.: Mechanical properties of pultruded GFRP profiles under seawater sea sand concrete environment coupled with UV radiation and moisture. Constr. Build. Mater. 258, 120369 (2020)

    Article  CAS  Google Scholar 

  47. Chin, J.W.: Durability of Composites Exposed to Ultraviolet Radiation. Durability of Composites for Civil Structural Applications, pp. 80–97. Woodhead Publishing (2007)

  48. Panchal, P., Mekonnen, T.H.: Tailored cellulose nanocrystals as a functional ultraviolet absorbing nanofiller of epoxy polymers. Nanoscale Adv. 7(1), 2612–2623 (2019)

    Article  Google Scholar 

  49. Corres, M.A., Zubitur, M., Cortazar, M., Múgica, A.: Thermal and thermo-oxidative degradation of poly (hydroxy ether of bisphenol-A) studied by TGA/FTIR and TGA/MS. J. Analyt Appl. Pyrolysis. 92(2), 407–416 (2011)

    Article  CAS  Google Scholar 

  50. Sun, Z., Hou, Y., Hu, Y., Hu, W.: Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater. Chem. Phys. 214, 154–164 (2018)

    Article  CAS  Google Scholar 

  51. Meure, S., Wu, D.Y., Furman, S.A.: FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin. Vibra. Spectros. 52(1), 10–15 (2010)

    Article  CAS  Google Scholar 

  52. Khan, Z., Habib, U., Mohamad, Z.B., Raji, A.M.: Enhanced mechanical properties of a novel compatibilized recycled polyethylene terephthalate/polyamide 11 (rPET/PA11) blends. eXPRESS Polym. Lett. 15(12), 1206–1215 (2021)

    Article  CAS  Google Scholar 

  53. Yang, Y., Xian, G., Li, H., Sui, L.: Thermal aging of an anhydride-cured epoxy resin. Polym. Degrad. Stab. 118, 111–119 (2015)

    Article  CAS  Google Scholar 

  54. Mailhot, B., Morlat-Thérias, S., Ouahioune, M., Gardette, J.L.: Study of the degradation of an epoxy/amine resin. Macromo Chem. Phys. 206(5), 575–584 (2005)

    Article  CAS  Google Scholar 

  55. Tcherbi-Narteh, A., Hosur, M., Triggs, E., Jeelani, S.: Thermal stability and degradation of diglycidyl ether of bisphenol A epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98(3), 759–770 (2013)

    Article  CAS  Google Scholar 

  56. Jia, Z., Hong, R.: Anticorrosive and photocatalytic properties research of epoxy-silica organic–inorganic coating. Colloids Surf. A: Physicochem Eng. Asp. 622, 126647 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support of the Celso Suckow da Fonseca Federal Center for Technology and Education (CEFET/RJ) and the Federal Fluminense Institute (IFF).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - (CAPES/Brasil) under Finance Code 001, by Research Foundation of the State of Rio de Janeiro (FAPERJ) and by the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hiasmim Rohem Gualberto, Felipe do Carmo Amorim, Hector Reynaldo Meneses Costa e Julian David Hunt. The characterization tests were carried out by João Marciano Laredo dos Reis and Mônica Calixto de Andrade. The first draft of the manuscript was written by Hiasmim Rohem Gualberto and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hiasmim Rohem Gualberto.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gualberto, H.R., dos Reis, J.M.L., de Andrade, M.C. et al. Effect of Exposure Time to UV Radiation on Mechanical Properties of Glass/Epoxy Composites. Appl Compos Mater 31, 447–465 (2024). https://doi.org/10.1007/s10443-023-10182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10182-0

Keywords

Navigation