Skip to main content
Log in

Translaminar Cracking Modeling in Woven-ply Thermoplastic Laminates in Tension and in Compression

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A numerical model developed in FE code Abaqus/Explicit was used to simulate the translaminar fracture and the damage propagation resulting from fiber breakage in woven-ply thermoplastic laminates. Compact tension and compact compression tests were modeled, and the primary physical phenomena responsible for the dissipation of mechanical energy during translaminar fracture were considered: fiber failure, in-plane shear plasticity and crushing plasticity. The objective was twofold: to highlight the dependence of the translaminar fracture on the stacking sequence and to understand how the mechanical energy is dissipated. Ultimately, the proposed numerical model enables a better understanding of the translaminar fracture behavior in tension and particularly in compression, which is more difficult to analyze due to the combination of complex physical phenomena at the same time. The proposed model shows that the fracture energy is the main dissipative phenomenon in quasi-isotropic laminates, contrary to orthotropic ones, in which plasticity and crushing become predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Pinho, S.T., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  CAS  Google Scholar 

  2. Tada, H., Paris, P.C., Irwin, G.R.: The stress analysis of cracks. Del Research Corporation (2000). (Handbook)

    Google Scholar 

  3. Laffan, M.J., Pinho, S.T., Robinson, P., Iannucci, L.: Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part II: size and lay-up effects. Compos. Sci. Technol. 70, 614–621 (2010)

    Article  CAS  Google Scholar 

  4. Catalanotti, G., Camanho, P.P., Xavier, J., Dávila, C.G., Marques, A.T.: Measurement of resistance curves in the longitudinal failure of composites using digital image correlation. Compos. Sci. Technol. 70(13), 1986–1993 (2010)

    Article  CAS  Google Scholar 

  5. Teixeira, R.F., Pinho, S.T., Robinson, P.: Thickness-dependence of the translaminar fracture toughness: experimental study using thin-ply composites. Compos. A. Appl. Sci. Manuf. 90, 33–44 (2016)

    Article  CAS  Google Scholar 

  6. Lisle, T., Pastor, M.L., Bouvet, C., Margueres, P.: Damage of woven composite under translaminar cracking tests using infrared thermography. Compos. Struct. 161, 275–286 (2017)

    Article  Google Scholar 

  7. Anderson, T.L., Anderson, T.L.: Fracture mechanics: fundamentals and applications. CRC Press (2005)

    Book  Google Scholar 

  8. Liebowitz, H.: Fracture: an advanced treatise. Volume VII. Fracture of nonmetals and composites. (1972)

    Google Scholar 

  9. Krueger, R.: The virtual crack closure technique: history, approach and applications. Institute for computer applications in science and engineering, Hampton, VA, USA (2002)

    Google Scholar 

  10. Teixeira, R.F., Pinho, S.T., Robinson, P.: Translaminar fracture toughness on CFRP: from the toughness of individual plies to the toughness of the laminates. ECCM15 -15th European Conference on Composite Materials, Venice, Italy, 24–28 June (2012)

    Google Scholar 

  11. Laffan, M.J., Pinho, S.T., Robinson, P., Iannucci, L.: Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP. Part I: data reduction. Compos. Sci. Technol. 70, 606–613 (2010)

    Article  CAS  Google Scholar 

  12. Vaidya, R.S., Sun, C.T.: Fracture criterion for notched thin composite laminates. AIAA. J. 35(2), 311–316 (1997)

    Article  CAS  Google Scholar 

  13. Poe, C.C., Jr.: A unifying strain criterion for fracture of fibrous composite laminates. Eng. Fract. Mech. 17(2), 153–171 (1983)

    Article  Google Scholar 

  14. Bullegas, G., Benoliel, J., Fenelli, P.L., Pinho, S.T., Pimenta, S.: Towards quasi isotropic laminates with engineered fracture behaviour for industrial applications. Compos. Sci. Technol. 165, 290–306 (2018)

    Article  CAS  Google Scholar 

  15. Bullegas, G., Pinho, S.T., Pimenta, S.: Engineering the translaminar fracture behaviour of thin-ply composites. Compos. Sci. Technol. 131, 110–122 (2016)

    Article  CAS  Google Scholar 

  16. Cugnoni, J., Frossard, G., Amacher, R., Botsis, J.: Translaminar fracture of regular and hybrid thin ply composites: experimental characterization and modelling. ECCM18 -18th European Conference on Composite Materials, Athens, Greece, 24–28th June (2018)

    Google Scholar 

  17. Jackson, W.C., Ratcliffe, J.G.: Measurement of fracture energy for kink-band growth in sandwich specimens, pp. 21–23. Composites Testing and Model Identification, Bristol, UK (2004)

    Google Scholar 

  18. Jones, R.M.: Other analysis and behavior topics. In: Mechanics of composite materials, 2nd edn., p. 345. Taylor & Francis, London, UK (1999)

    Google Scholar 

  19. Tan, S.C.: Stress concentration in laminated composites. Technomic Pub. Co., Lancaster, Pa. (1994)

    Google Scholar 

  20. Ortega, A., Maimí, P., González, E.V., de Aja, J.S., de la Escalera, F.M., Cruz, P.: Translaminar fracture toughness of interply hybrid laminates under tensile and compressive loads. Compos. Sci. Technol. 143, 1–12 (2017)

    Article  CAS  Google Scholar 

  21. Teixeira, R.D.F., Pinho, S.T., Robinson, P.: Translaminar fracture toughness of CFRP: from the toughness of individual plies to the toughness of the laminate. Imperial College London (2014). (Doctoral dissertation)

    Google Scholar 

  22. Jose, S., Kumar, R.R., Jana, M.K., Rao, G.V.: Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates. Compos. Sci. Technol. 61(8), 1115–1122 (2001)

    Article  CAS  Google Scholar 

  23. Vieille, B., Pujols González, J.D., Bouvet, C.: Fracture mechanics of hybrid composites with ductile matrix and brittle fibers: influence of temperature and constraint effect. J. Compos. Mater. 53(10), 1361–1376 (2019)

    Article  CAS  Google Scholar 

  24. Ritchie, R.O.: Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 100(1), 55–83 (1999)

    Article  CAS  Google Scholar 

  25. Dávila, C.G., Rose, C.A., Camanho, P.P.: A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int. J. Fract. 158(2), 211–223 (2009)

    Article  Google Scholar 

  26. Bergan, A., Dávila, C., Leone, F., Awerbuch, J., Tan, T.M.: A Mode I cohesive law characterization procedure for through-the-thickness crack propagation in composite laminates. Compos. B. Eng. 94, 338–349 (2016)

    Article  CAS  Google Scholar 

  27. Xu, X., Takeda, S.I., Aoki, Y., Hallett, S.R., Wisnom, M.R.: Predicting notched tensile strength of full-scale composite structures from small coupons using fracture mechanics. Compos. Struct. 180, 386–394 (2017)

    Article  Google Scholar 

  28. Zobeiry, N., Forghani, A., McGregor, C., McClennan, S., Vaziri, R., Poursartip, A.: Effective calibration and validation of a nonlocal continuum damage model for laminated composites. Compos. Struct. 173, 188–195 (2017)

    Article  Google Scholar 

  29. Xu, X., Wisnom, M.R., Hallett, S.R.: Deducing the R-curve for trans-laminar fracture from a virtual Over-height Compact Tension (OCT) test. Compos. A Appl. Sci. Manuf. 118, 162–170 (2019)

    Article  CAS  Google Scholar 

  30. Zobeiry, N., Vaziri, R., Poursartip, A.: Characterization of strain-softening behavior and failure mechanisms of composites under tension and compression. Compos. A Appl. Sci. Manuf. 68, 29–41 (2015)

    Article  CAS  Google Scholar 

  31. Ortega, A., Maimí, P., González, E.V., Trias, D.: Characterization of the translaminar fracture Cohesive Law. Compos. A Appl. Sci. Manuf. 91, 501–509 (2016)

    Article  CAS  Google Scholar 

  32. Ridha, M., Wang, C.H., Chen, B.Y., Tay, T.E.: Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences. Compos. A Appl. Sci. Manuf. 58, 16–23 (2014)

    Article  CAS  Google Scholar 

  33. Su, Z.C., Tay, T.E., Ridha, M., Chen, B.Y.: Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 122, 507–517 (2015)

    Article  Google Scholar 

  34. Bouvet, C., Rivallant, S., Barrau, J.J.: Low velocity impact modeling in composite laminates capturing permanent indentation. Compos. Sci. Technol. 72(16), 1977–1988 (2012)

    Article  CAS  Google Scholar 

  35. Iannucci, L., Willows, M.L.: An energy based damage mechanics approach to modelling impact onto woven composite materials – Part I: Numerical models. Compos. A. Appl. Sci. Manuf. 37(11), 2041–2056 (2006)

    Article  Google Scholar 

  36. Liu, H., Falzon, B.G., Li, S., Tan, W., Liu, J., Chai, H., Dear, J.P.: Compressive failure of woven fabric reinforced thermoplastic composites with an open-hole: an experimental and numerical study. Compos. Struct. 213, 108–117 (2019)

    Article  Google Scholar 

  37. Jebri, L., Abbassi, F., Demiral, M., Soula, M., Ahmad, F.: Experimental and numerical analysis of progressive damage and failure behavior of carbon woven-PPS. Compos. Struct. 243, 112234 (2020)

    Article  Google Scholar 

  38. Pinho, S.T., Vyas, G.M., Robinson, P.: Response and damage propagation of polymer-matrix fibre-reinforced composites: predictions for WWFE-III Part A. J. Compos. Mater. 47(20–21), 2595–2612 (2013)

    Article  Google Scholar 

  39. Dassault Systemes: Abaqus user subroutines reference guide, version 6.14. Dassault Systemes Simulia Corp., Providence, RI, USA (2014)

    Google Scholar 

  40. Pujols González, J.D., Vieille, B., Bouvet, C.: High temperature translaminar fracture of woven-ply thermoplastic laminates in tension and in compression. Eng. Fract. Mech. 246, 107616 (2021)

    Article  Google Scholar 

  41. Standard, A.S.T.M.: E399–12 Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. American Society for Testing and Materials, West Conshohocken, PA (2012)

    Google Scholar 

  42. Dassault Systemes: Abaqus 6.14–analysis users’s guide: volume V: prescribed conditions, constraints & interactions. Providence, Rhode Island (2013)

    Google Scholar 

  43. Bažant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete. Matér. Constr. 16(3), 155–177 (1983)

    Article  Google Scholar 

  44. Israr Ahmad, H.A.B., Rivallant, S., Bouvet, C., Barrau, J.-J.: Experimental investigation on mean crushing stress characterization of carbon-epoxy plies under compressive crushing mode. Compos Struct 96, 357–364 (2013). https://doi.org/10.1016/j.compstruct.2012.09.022. (ISSN 0263–8223)

    Article  Google Scholar 

  45. Israr, H.A., Rivallant, S., Bouvet, C., Barrau, J.J.: Finite element simulation of 0°/90° CFRP laminated plates subjected to crushing using a free-face-crushing concept. Compos. A. (2014). https://doi.org/10.1016/j.compositesa.2014.03.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to duly thank CALMIP High Performance Computing platform (https://www.calmip.univ-toulouse.fr) for providing the computational means required to conduct the numerical simulations under the project reference p1026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Bouvet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, J.D.P., Bouvet, C. & Vieille, B. Translaminar Cracking Modeling in Woven-ply Thermoplastic Laminates in Tension and in Compression. Appl Compos Mater 30, 913–935 (2023). https://doi.org/10.1007/s10443-023-10128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10128-6

Keywords

Navigation