Skip to main content
Log in

Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57–70 2014) to include delamination and simulated additional [45/−45/0/90]s and [02/90n]s {n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Jones, R.M.: Mechanics of Composite Materials. Second Edition, Taylor and Francis Publication, Boca Rotan (2008)

  2. Berthelot, J.M., Le Corre, J.-F.: A model for transverse cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 60, 1055–1066 (2000)

    Article  Google Scholar 

  3. Crossman, F.W., Wang, S.D.: The dependence of transverse cracking and delamination on ply thickness in Graphite/Epoxy laminates. Damage Composite Material op. ct. 118–39 (1984)

  4. Wang, A.S.D., Kishore, N.N., Li, C.A.: Crack development in graphite-epoxy cross-ply laminates under uni-axial tension. Compos. Sci. Technol. 24, 1–31 (1985)

    Article  Google Scholar 

  5. Wang, A.S.D.: Fracture mechanics of sub-laminate cracks in composite materials. Compos. Technol. Rev. 6, 45–62 (1984)

    Article  Google Scholar 

  6. Highsmith, A.L., Reifsnider, K.L.: Stiffness reduction mechanism in composite laminates. Damage in Composite Materials. ASTM, STP 775, 103–117 (1982)

    Google Scholar 

  7. Berbinau, P., Soutis, C., Guz, I.A.: Compressive failure of 00 unidirectional carbon-fiber-reinforced plastics (CFRP) laminates by fiber micro buckling. Compos. Sci. Technol. 59, 1451–1455 (1999)

    Article  Google Scholar 

  8. Anderson, T.L.: Fracture Mechanics- Fundamentals and Applications. CRC Press, New York (1995)

    Google Scholar 

  9. Kashtalyan, M., Soutis, C.: The effect of delamination induced by transverse cracks and splits on stiffness properties of composite laminates. Compos. A: Appl. Sci. Manuf. 31, 107–119 (2000)

    Article  Google Scholar 

  10. Kashtalyan, M., Soutis, C.: Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Compos. A: Appl. Sci. Manuf. 31, 335–351 (2000)

    Article  Google Scholar 

  11. Kashtalyan, M., Soutis, C.: Analysis of local delamination in composite laminates with angle-ply matrix cracks. Int. J. Solids Struct. 39, 1515–1537 (2002)

    Article  Google Scholar 

  12. Kashtalyan, M., Soutis, C.: Mechanisms of internal damage and their effect on the behavior and properties of cross-ply composite laminates. Int. Appl. Mech. 38(6), 641–657 (2002)

    Article  Google Scholar 

  13. Zhang, J., Soutis, C., Fan, J.: Strain energy release rate associated with local delamination in cracked composite laminates. Composites 25(9), 851–862 (1994)

    Article  Google Scholar 

  14. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  15. Hashin, Z.: Failure criteria for uni-directional fiber composites. J. Appl. Mech. 47(1), 329–334 (1980)

    Article  Google Scholar 

  16. Nairn, J.A.: The strain energy release rate of composite micro-cracking: a variational approach. J. Compos. Mater. 23(11), 1106–1129 (1989)

    Article  Google Scholar 

  17. Varna, J., Berglund, L.A.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J. Compos. Technol. Res. 13(2), 97–106 (1991)

    Article  Google Scholar 

  18. Varna, J., Berglund, L.A.: A model for prediction of the transverse cracking strain in cross-ply laminates. J. Reinf. Plast. Compos. 11(7), 708–728 (1992)

    Article  Google Scholar 

  19. Berglund, L.A., Varna, J.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)

    Article  Google Scholar 

  20. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part1: In-plane stiffness properties. Composites 23(5), 291–298 (1992)

    Article  Google Scholar 

  21. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θm/90n]s composite laminates. Part 2: Development of transverse ply cracks. Composites 23(5), 299–304 (1992)

    Article  Google Scholar 

  22. Smith, P.A., Boniface, L., Glass, N.F.C.: A comparison of transverse cracking phenomena in [0/90]s and [90/0]s CFRP laminates. Appl. Compos. Mater. 5, 11–23 (1998)

    Article  Google Scholar 

  23. Berthelot, J.-M.: Transverse cracking and delamination in cross-ply glass-fiber and carbon fiber reinforced plastics laminates: static and fatigue loading. Appl. Mech. Rev. 56(1), 111–148 (2003)

    Article  Google Scholar 

  24. Kachanov, L.M.: On the creep rupture time. Izv AN SSSR Otd Tekhn Nauk 8, 26–31 (1958)

    Google Scholar 

  25. Rabotnov, Y.N.: On the Equations of State for Creep. Progress in Appl. Mech. Prager Anniversary Volume. Macmillan, New York (1963)

    Google Scholar 

  26. Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M., Almeida, S.F.M.: A progressive failure model for composite laminates subjected to low-velocity impact damage. Comput. Struct. 86, 1232–1252 (2008)

    Article  Google Scholar 

  27. Faggiani, A., Falzon, B.G.: Predicting low-velocity impact damage on a stiffened composite panel. Compos. A: Appl. Sci. Manuf. 41, 737–749 (2010)

    Article  Google Scholar 

  28. Iannucci, L., Ankersen, J.: An energy based damage model for thin laminated composites. Compos. Sci. Technol. 66, 934–951 (2006)

    Article  Google Scholar 

  29. Yokoyama, N.O., Donadon, M.V., Almeida, S.F.M.: A numerical study on the impact resistance of composite shells using an energy based failure model. Compos. Struct. 93, 142–152 (2010)

    Article  Google Scholar 

  30. Barbero, E.J., Cortes, D.H.: A Mechanistic model for transverse damage initiation, evolution, and stiffness reduction in laminated composites. Compos. Part B. Eng. 41(2), 124–132 (2010)

    Article  Google Scholar 

  31. Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Freres, P.: Modeling of failure in long fibers reinforced composites by X-FEM and cohesive zone model. Compos. Part B. Eng. 55, 352–361 (2013)

    Article  Google Scholar 

  32. Shi, Y., Swait, T., Soutis, C.: Modeling damage evolution in composite laminates subjected to low-velocity impact. Compos. Struct. 94, 2902–2913 (2012)

    Article  Google Scholar 

  33. Shi, Y., Pinna, C., Soutis, C.: Interface cohesive element to model matrix crack evolution in composite laminates. Appl. Compos. Mater. 21, 57–70 (2014)

    Article  Google Scholar 

  34. Caputo, F., De Luca, A., Lamanna, G., Lopresto, V., Riccio, A.: Numerical investigation of onset and evolution of LVI damages in Carbon–Epoxy plates. Compos. Part B. Eng. 68, 385–391 (2015)

    Article  Google Scholar 

  35. Riccio, A., De Luca, A., Di Felice, G., Caputo, F.: Modeling the simulation of impact induced damage onset and evolution in composites. Compos. Part B. Eng. 66, 340–347 (2014)

    Article  Google Scholar 

  36. Carraro, P.A., Quaresimin, M.: A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int. J. Solids Struct. 58, 34–51 (2015)

    Article  Google Scholar 

  37. Sills, R.B., Thouless, M.D.: Cohesive-length scales for damage and toughening mechanisms. Int. J. Solids Struct. 55, 32–43 (2015)

    Article  Google Scholar 

  38. Van der Meer, F.P., Davila, C.G.: Cohesive modeling of transverse cracking in laminates under in-plane loading with a single layer of elements per ply. Int. J. Solids Struct. 50, 3308–3318 (2013)

    Article  Google Scholar 

  39. Reedy Jr., E.D.: Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner. Int. J. Solids Struct. 51, 4336–4344 (2014)

    Article  Google Scholar 

  40. Han, Y., Hahn, H.T., Croman, R.B.: A simplified analysis of the transverse ply cracking in cross-ply laminates. Compos. Sci. Technol. 31, 165–177 (1988)

    Article  Google Scholar 

  41. Hahn, H.T., Han, Y.M., Kim, R.Y.: Resistance curves for ply cracking in composite laminates. Proc 33rd. Int. SAMPE. Symp., 1101–8 (1998)

  42. Fan, J., Zhang, J.: In-situ damage evolution and micro/macro transition for laminated composites. Compos. Sci. Technol. 47(2), 107–118 (1993)

    Article  Google Scholar 

  43. Camanho, P.P., Dávila, C.G.: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials., Tech. Rep. NASA/TM-2002-211737 (2002)

  44. Camanho, P.P., Dávila, C.G., de Moura, M.F.: Numerical simulation of the mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  45. ABAQUS.: ABAQUS Version 6.10, Dassault systems. Providence (2010)

  46. Barbero, E.J.: Finite Element Analysis of Composite Materials Using Abaqus. CRC Press (2010)

  47. Turon, A.: Simulation of Delamination in Composites Under Quasi-Static and Fatigue Loading Using Cohesive Zone Models. PhD Dissertation Universitat de Girona (2006)

  48. Ankersen, J., Davies, G.A.O.: Interface elements–advantages and limitations in CPRP delamination modeling. In: 17th International Conference on Composite Materials. Edinburgh, UK (2009)

  49. Pinho, S.T., Iannucci, L., Robinson, P.: Fracture toughness of the tensile and compressive fiber failure modes in laminated composites. Compos. Sci. Technol. 66(13), 2069–2079 (2006)

    Article  Google Scholar 

  50. Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)

    Article  Google Scholar 

  51. Daudeville, L., Allix, O., Ladevèze, P.: Delamination analysis by damage mechanics: Some applications. Compos. Eng. 5(1), 17–24 (1995)

    Article  Google Scholar 

  52. Gonçalves, J.P.M., de Moura, M.F.S.F., de Castro, P.M.S.T., Marques, A.T.: Interface element including point-to-surface constraints for three-dimensional problems with damage propagation. Eng. Comput. 17(1), 28–47 (2000)

    Article  Google Scholar 

  53. Mi, Y., Crisfield, M.A.: Analytical Derivation of Load/Displacement Relationships for Mixed-Mode Delamination and Comparison with Finite Element Results. Imperial College, Department of Aeronautics, London (1996)

    Google Scholar 

  54. Schelleckens, J.C.J., de Borst, R.: On the numerical integration of interface elements. Int. J. Numer. Methods Eng. 36, 43–66 (1993)

    Article  Google Scholar 

  55. Zou, Z., Reid, S.R., Li, S., Soden, P.D.: Modeling inter-laminar and intra-laminar damage in filament wound pipes under quasi-static indentation. J. Compos. Mater. 36, 477–499 (2002)

    Article  Google Scholar 

  56. Hashin, Z.: Analysis of orthogonally cracked laminates under tension. Trans. ASME J. Appl. Mech. 54, 272–279 (1987)

    Article  Google Scholar 

  57. Henaff-Gardin, C., Lafarie-Frenot, M.C., Gamby, D.: Doubly period matrix cracking in composite laminates Part 1: general in-plane loading. Compos. Struct. 36, 113–130 (1996)

    Article  Google Scholar 

  58. Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Resources Development Program (No. 20114010203070) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. The research was supported by ‘Software Convergence Technology Development Program’, through the Ministry of Science, ICT and Future Planning (S1002-13-1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hwe Kweon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Roy, R., Kweon, JH. et al. Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements. Appl Compos Mater 23, 397–419 (2016). https://doi.org/10.1007/s10443-015-9465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9465-0

Keywords

Navigation