Skip to main content

Advertisement

Log in

Effect of Aramid Fiber on the Properties of Glass Fiber-Reinforced Composite for Cryogenic Applications

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Flexible secondary barrier (FSB), a glass woven fabric-reinforced composite, is used for liquefied natural gas (LNG) cargo containment system (CCS) owing to its excellent mechanical and thermal properties. FSB, a sealing material that prevents LNG leakage, is crucial for preventing accidents among composite materials constituting CCS. However, despite its importance, previous studies highlighting the vulnerability of FSB have been reported, and there is a lack of studies addressing improvements carried out on FSB. In this study, aramid fibers, which have higher strength and modulus than glass fibers, were reinforced on both sides of FSB to improve the mechanical properties. To evaluate the mechanical properties of FSB reinforced by aramid fibers, tensile tests were performed from room temperature (20 °C) to cryogenic temperature (-170 °C). The thermal properties were also investigated to analyze the effects of aramid fibers on the temperature-dependent behavior of FSB. It was found that the mechanical properties significantly improved due to the reinforcement of aramid fibers. In the case of room temperature, the ultimate strength increased by 72.5% and the elastic modulus increased by 34.9%; with cryogenic temperature, the ultimate strength and elastic modulus increased by 22.5% and 104.1%, respectively. The failure behavior analysis was performed and macroscopic fracture observations were conducted to analyze the effect of temperature on the failure characteristics of the functional composite. The failure characteristics of FSB reinforced by aramid fibers were verified to be temperature-dependent by confirming that the failure mechanism was different according to the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Campbell, F.C.: Structural composite materials. ASM international (2010)

  2. La Rosa, A.D., Cicala, G.: LCA of fibre-reinforced composites. In: Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing. pp. 301–323. Woodhead Publishing (2015)

  3. Khan, Z.I., Arsad, A., Mohamad, Z., Habib, U., Zaini, M.A.A.: Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Mater. Today Proc. 39, 956–958 (2021). https://doi.org/10.1016/j.matpr.2020.04.223

    Article  CAS  Google Scholar 

  4. Balasubramanian, K., Sultan, M.T.H., Rajeswari, N.: Manufacturing techniques of composites for aerospace applications. In: Sustainable Composites for Aerospace Applications. pp. 55–67. Elsevier (2018)

  5. Asaro, R.J., Lattimer, B., Ramroth, W.: Structural response of FRP composites during fire. Compos. Struct. 87, 382–393 (2009). https://doi.org/10.1016/j.compstruct.2008.02.018

    Article  Google Scholar 

  6. Khan, Z.I., Mohamad, Z., Rahmat, A.R., Habib, U.: Synthesis and Characterization of Composite Materials with Enhanced Thermo-Mechanical Properties for Unmanned Aerial Vehicles (Uavs) and Aerospace Technologies. Pertanika J. Sci. Technol. 29, 2003–2015 (2021). https://doi.org/10.47836/pjst.29.3.15

  7. Khan, Z.I., Habib, U., Binti Mohamad, Z., Razak Bin Rahmat, A., Amira Sahirah Binti Abdullah, N.: Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review. Alexandria Eng. J. 61, 975–990 (2022). https://doi.org/10.1016/j.aej.2021.06.015

  8. Zhang, M., Matinlinna, J.P.: E-Glass Fiber Reinforced Composites in Dental Applications. SILICON 4, 73–78 (2012). https://doi.org/10.1007/s12633-011-9075-x

    Article  CAS  Google Scholar 

  9. Kinsella, M., Murray, D., Crane, D., Mancinelli, J., Kranjc, M.: Mechanical properties of polymeric composites reinforced with high strength glass fibers. In: International SAMPE Technical Conference. pp. 1644–1657 (2001)

  10. Park, S.-J., Seo, M.-K.: Types of Composites. In: Interface Science and Technology. pp. 501–629. Elsevier (2011)

  11. Dixit, A., Mali, H.S.: Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a Review. Mech. Compos. Mater. 49, 1–20 (2013). https://doi.org/10.1007/s11029-013-9316-8

    Article  Google Scholar 

  12. Yu, H., Longana, M.L., Jalalvand, M., Wisnom, M.R., Potter, K.D.: Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres. Compos. Part A Appl. Sci. Manuf. 73, 35–44 (2015). https://doi.org/10.1016/j.compositesa.2015.02.014

    Article  CAS  Google Scholar 

  13. Schutz, J.: Properties of composite materials for cryogenic applications. Cryogenics (Guildf). 38, 3–12 (1998). https://doi.org/10.1016/S0011-2275(97)00102-1

    Article  CAS  Google Scholar 

  14. Wang, K.S.: Loss Prevention Through Risk Assessment Surveys of LNG Carriers in Operation, Under Construction, Conversion and Repair. , Tokyo, Japan (2010)

  15. Han, S., Rim, C.W., Cho, H., Suh, Y., Lee, J., Lee, T.K.: Experimental Study on the Structural Behavior of Secondary Barrier of MARK-III LNG CCS. In: International Conference on Offshore Mechanics and Arctic Engineering. pp. 101–107. ASMEDC (2009)

  16. Kim, M.H., Kil, Y.P., Lee, J.M., Chun, M.S., Suh, Y.S., Kim, W.S., Noh, B.J., Yoon, J.H., Kim, M.S., Urm, H.S.: Cryogenic Fatigue Strength Assessment for MARK-III Insulation System of LNG Carriers. J. Offshore Mech. Arct. Eng. 133, (2011). https://doi.org/10.1115/1.4003389

  17. Jeong, Y.-J., Kim, J.-D., Hwang, B.-K., Kim, H.-T., Oh, H.-G., Kim, Y.-T., Park, S.-B., Lee, J.-M.: Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction. J. Soc. Nav. Archit. Korea. 57, 168–174 (2020). https://doi.org/10.3744/SNAK.2020.57.3.168

    Article  Google Scholar 

  18. Oh, D.J., Lee, J.M., Chun, M.S., Kim, M.H.: Reliability evaluation of a LNGC insulation system with a metallic secondary barrier. Compos. Struct. 171, 43–52 (2017). https://doi.org/10.1016/j.compstruct.2017.03.040

    Article  Google Scholar 

  19. Su Kim, H., Sung Chun, M., Myung Lee, J., Hyun Kim, M.: A Comparative Evaluation of Fatigue and Fracture Characteristics of Structural Components of Liquefied Natural Gas Carrier Insulation System. J. Press. Vessel Technol. 135, (2013). https://doi.org/10.1115/1.4007473

  20. Rajesh, S., Vijayaramnath, B., Elanchezhian, C., Vivek, S., Prasadh, M.H., Kesavan, M.: Experimental Investigation of Tensile and Impact Behavior of Aramid-Natural Fiber Composite. Mater. Today Proc. 16, 699–705 (2019). https://doi.org/10.1016/j.matpr.2019.05.148

    Article  CAS  Google Scholar 

  21. Swolfs, Y., Gorbatikh, L., Verpoest, I.: Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 67, 181–200 (2014). https://doi.org/10.1016/j.compositesa.2014.08.027

    Article  CAS  Google Scholar 

  22. Rajpurohit, A., Joannès, S., Singery, V., Sanial, P., Laiarinandrasana, L.: Hybrid Effect in In-Plane Loading of Carbon/Glass Fibre Based Inter- and Intraply Hybrid Composites. J. Compos. Sci. 4, 6 (2020). https://doi.org/10.3390/jcs4010006

    Article  Google Scholar 

  23. Kretsis, G.: A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18, 13–23 (1987). https://doi.org/10.1016/0010-4361(87)90003-6

    Article  CAS  Google Scholar 

  24. Phillips, M.G.: Composition parameters for hybrid composite materials. Composites 12, 113–116 (1981). https://doi.org/10.1016/0010-4361(81)90417-1

    Article  Google Scholar 

  25. Park, J.H., Oh, D.J., Kim, M.H., Kim, K.H., Kim, M.K., Moon, H.S.: Fatigue Strength of a LNGC Secondary Barrier Made of a Composite Material with Aramid Fibers. Mech. Compos. Mater. 54, 431–442 (2018). https://doi.org/10.1007/s11029-018-9753-5

    Article  CAS  Google Scholar 

  26. Song, H., Lim, H.J., Lee, S., Sohn, H., Yun, W., Song, E.: Automated detection and quantification of hidden voids in triplex bonding layers using active lock-in thermography. NDT E Int. 74, 94–105 (2015). https://doi.org/10.1016/j.ndteint.2015.05.004

    Article  Google Scholar 

  27. Crocker, L.E., Duncan, B.C., Broughton, W.R.: Assessment of test methods for a cryogenic liquid containment system. Int. J. Adhes. Adhes. 70, 126–136 (2016). https://doi.org/10.1016/j.ijadhadh.2016.06.004

    Article  CAS  Google Scholar 

  28. Reed, R.P., Golda, M.: Cryogenic properties of unidirectional composites. Cryogenics (Guildf). 34, 909–928 (1994). https://doi.org/10.1016/0011-2275(94)90077-9

    Article  CAS  Google Scholar 

  29. DuPont, F.T.: Kevlar aramid fiber technical guide. (2000)

  30. GTT (Gaztransport & Technigaz): Secondary barrier Specification Nr. M 3101 Rev. C, (2010)

  31. ASTM committee D-30 on Composite Materials: Standard test method for tensile properties of polymer matrix composite materials. ASM Int. (2008)

  32. Kumagai, S., Shindo, Y., Horiguchi, K., Takeda, T.: Mechanical Characterization of CFRP Woven Laminates between Room Temperature and 4K. JSME Int. J. Ser. A. 46, 359–364 (2003). https://doi.org/10.1299/jsmea.46.359

    Article  Google Scholar 

  33. Sideridou, I., Achilias, D.S., Kyrikou, E.: Thermal expansion characteristics of light-cured dental resins and resin composites. Biomaterials 25, 3087–3097 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.078

    Article  CAS  Google Scholar 

  34. Kim, J.-B., Kim, H.-I., Jeon, H.-C.: Analysis of Thermal Deformation of Co-bonded Dissimilar Composite considering Non-linear Thermal Expansion Characteristics of Composite Materials. J. Korean Soc. Aeronaut. Sp. Sci. 42, 809–815 (2014). https://doi.org/10.5139/JKSAS.2014.42.10.809

    Article  Google Scholar 

  35. Wang, X., Liu, X., Deakin, C.H.: Physical and mechanical testing of textiles. In: Fabric Testing. pp. 90–124. Woodhead Publishing (2008)

  36. Hearle, J.W., Lomas, B., Cooke, W.D.: Atlas of Fibre Fracture and Damage to Textiles. Elsevier (1998)

  37. Robles-Vazquez, O., Orozco-Avila, I., Sánchez-Díaz, J., Hernandez, E.: An Overview of Mechanical Tests for Polymeric Biomaterial Scaffolds Used in Tissue Engineering. J. Res. Updat. Polym. Sci. 4, 168–178 (2016). https://doi.org/10.6000/1929-5995.2015.04.04.1

    Article  CAS  Google Scholar 

  38. Yao, Y., Zhu, D., Zhang, H., Li, G., Mobasher, B.: Tensile Behaviors of Basalt, Carbon, Glass, and Aramid Fabrics under Various Strain Rates. J. Mater. Civ. Eng. 28, 04016081 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001587

    Article  Google Scholar 

  39. Sun, F., Hu, X.: Effect of meso-scale structures and hyper-viscoelastic mechanics on the nonlinear tensile stability and hysteresis of woven materials. Mater. Res. Express. 7, 075306 (2020). https://doi.org/10.1088/2053-1591/aba6be

    Article  CAS  Google Scholar 

  40. Shahabi, N.E., Mousazadegan, F., Varkiyani, S.M.H., Saharkhiz, S.: Crimp analysis of worsted fabrics in the terms of fabric extension behaviour. Fibers Polym. 15, 1211–1220 (2014). https://doi.org/10.1007/s12221-014-1211-y

    Article  CAS  Google Scholar 

  41. Jeong, Y.-J., Kim, H.-T., Kim, J.-D., Oh, H.-G., Kim, Y.-T., Park, S.-B., Lee, J.-M.: Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material. J. Soc. Nav. Archit. Korea. 58, 17–23 (2021). https://doi.org/10.3744/SNAK.2021.58.1.017

    Article  Google Scholar 

  42. Ciesielski, A.: An introduction to rubber technology. iSmithers Rapra publishing (1999)

  43. Chu, X.X., Wu, Z.X., Huang, R.J., Zhou, Y., Li, L.F.: Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics (Guildf). 50, 84–88 (2010). https://doi.org/10.1016/j.cryogenics.2009.12.003

    Article  CAS  Google Scholar 

  44. Dhakal, H.N., Sain, M.: Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials (Basel). 13, 109 (2019). https://doi.org/10.3390/ma13010109

  45. Aklilu, G., Adali, S., Bright, G.: Tensile behaviour of hybrid and non-hybrid polymer composite specimens at elevated temperatures. Eng. Sci. Technol. an Int. J. 23, 732–743 (2020). https://doi.org/10.1016/j.jestch.2019.10.003

    Article  Google Scholar 

  46. Sayyar, M., Balachandra, A.M., Soroushian, P.: Energy absorption capacity of pseudoelastic fiber-reinforced composites. Sci. Eng. Compos. Mater. 21, 173–179 (2014). https://doi.org/10.1515/secm-2013-0021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials/Parts Technology Development Program (20017575, Development of Applicability Evaluation Technology for Cryogenic Insulation Material and Storage Vessel considering Operating Condition of Hydrogen Commercial Vehicle) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea). This work was supported by the R&D Platform Establishment of Eco-Friendly Hydrogen Propulsion Ship Program (No. 20006644) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Myung Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, SG., Yeom, DJ., Jeong, YJ. et al. Effect of Aramid Fiber on the Properties of Glass Fiber-Reinforced Composite for Cryogenic Applications. Appl Compos Mater 29, 1431–1448 (2022). https://doi.org/10.1007/s10443-022-10025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10025-4

Keywords

Navigation