Skip to main content
Log in

Interleaving CFRP and GFRP with a Thermoplastic Ionomer: The Effect on Bending Properties

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Carbon and glass fiber reinforced polymers are employed in a variety of structural applications that require high stiffness and lightweight composites. However, poor through thickness properties make these laminates susceptible to delamination, usually caused by low energy impact. Interleaving these composites with a thermoplastic material has the potential to reduce the risk of delamination. Here we prepared preforms of dry textiles with a thin ionomeric layer melted on the mid plane, followed by resin infusion. Interleaved GFRP had its flexural toughness improved in 95.5% and its charpy impact strength increased in 23%. On the other hand, CFRP presented a reduction in 10% on flexural toughness and no improving in impact strength due to poor adhesion between CF and the ionomer, as confirmed by SEM images. Nonetheless, both interleaved systems showed an increase in damping observed by a reduction of 30% on Tanδ peak in DMA tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sonnenfeld, C., Mendil-Jakani, H., Agogué, R., Nunez, P., Beauchêne, P.: Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos. Struct. 171, 298–305 (2017). https://doi.org/10.1016/j.compstruct.2017.03.044

    Article  Google Scholar 

  2. Bian, D., Bucher, T., Tan, H., Yao, Y.L.: Effect of Deep Penetration of Interleaf on Delamination Resistance in GFRP. Procedia Manuf. 1, 442–453 (2015). https://doi.org/10.1016/j.promfg.2015.09.055

    Article  Google Scholar 

  3. Boyd, S.E., Bogetti, T.A., Staniszewski, J.M., Lawrence, B.D., Walter, M.S.: Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers. Compos. Struct. 189, 184–191 (2018). https://doi.org/10.1016/j.compstruct.2018.01.062

    Article  Google Scholar 

  4. Tan, H., Yao, Y.L.: Feasibility analysis of inter-laminar toughening for improving delamination resistance. Manuf. Lett. 1, 33–37 (2013). https://doi.org/10.1016/j.mfglet.2013.09.009

    Article  CAS  Google Scholar 

  5. Kim, J.K.: Methods for Improving Impact Damage Resistance of CFRPs. Key Eng. Mater. 141–143, 149–168 (1998). https://doi.org/10.4028/www.scientific.net/kem.141-143.149

    Article  Google Scholar 

  6. Quan, D., Bologna, F., Scarselli, G., Ivankovic, A., Murphy, N.: Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils. Compos. Part A Appl. Sci. Manuf. 128, 105642 (2020). https://doi.org/10.1016/j.compositesa.2019.105642

    Article  CAS  Google Scholar 

  7. Akangah, P., Lingaiah, S., Shivakumar, K.: Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Compos. Struct. 92, 1432–1439 (2010). https://doi.org/10.1016/j.compstruct.2009.11.009

    Article  Google Scholar 

  8. Zheng, N., Liu, H.Y., Gao, J., Mai, Y.W.: Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves. Compos. Part B Eng. 171, 320–328 (2019). https://doi.org/10.1016/j.compositesb.2019.05.004

    Article  CAS  Google Scholar 

  9. Song, Y., Zheng, N., Dong, X., Gao, J.: Flexible Carboxylated CNT/PA66 Nanofibrous Mat Interleaved Carbon Fiber/Epoxy Laminates with Improved Interlaminar Fracture Toughness and Flexural Properties. Ind. Eng. Chem. Res. 59, 1151–1158 (2020). https://doi.org/10.1021/acs.iecr.9b05854

    Article  CAS  Google Scholar 

  10. Eun, J.H., Kim, D.H., Lee, J.S.: Effect of low melting temperature polyamide fiber-interlaced carbon fiber braid fabric on the mechanical performance and fracture toughness of CFRP laminates. Compos. Part A Appl. Sci. Manuf. 137, 105987 (2020). https://doi.org/10.1016/j.compositesa.2020.105987

    Article  CAS  Google Scholar 

  11. Del Saz-Orozco, B., Ray, D., Stanley, W.F.: Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite. Polym. Compos. 38, 2501–2508 (2017). https://doi.org/10.1002/pc.23840

    Article  CAS  Google Scholar 

  12. Anand, A., Kumar, N., Harshe, R., Joshi, M.: Glass/epoxy structural composites with interleaved nylon 6/6 nanofibers. J. Compos. Mater. 51, 3291–3298 (2017). https://doi.org/10.1177/0021998316682603

    Article  CAS  Google Scholar 

  13. Meireman, T., Daelemans, L., Rijckaert, S., Rahier, H., Van Paepegem, W., De Clerck, K.: Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphology. Compos. Sci. Technol. 193, 108126 (2020). https://doi.org/10.1016/j.compscitech.2020.108126

    Article  CAS  Google Scholar 

  14. Daelemans, L., Cohades, A., Meireman, T., Beckx, J., Spronk, S., Kersemans, M., De Baere, I., Rahier, H., Michaud, V., Van Paepegem, W., De Clerck, K.: Electrospun nanofibrous interleaves for improved low velocity impact resistance of glass fibre reinforced composite laminates. Mater. Des. 141, 170–184 (2018). https://doi.org/10.1016/j.matdes.2017.12.045

    Article  CAS  Google Scholar 

  15. Ou, Y., González, C., Vilatela, J.J.: Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Compos. Part A Appl. Sci. Manuf. 124, 105477 (2019). https://doi.org/10.1016/j.compositesa.2019.105477

    Article  CAS  Google Scholar 

  16. Ou, Y., González, C., Vilatela, J.J.: Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils. Compos. Part B Eng. 703, 108372 (2020). https://doi.org/10.1016/j.compositesb.2020.108372

    Article  CAS  Google Scholar 

  17. Barraza, H.J., Hamidi, Y.K., Aktas, L., O’Rear, E.A., Altan, M.C.: Performance of glass woven fabric composites with admicellar-coated thin elastomeric interphase. Compos. Interfaces. 24, 125–148 (2017). https://doi.org/10.1080/09276440.2016.1193345

    Article  CAS  Google Scholar 

  18. Sharma, S., Dhakate, S.R., Majumdar, A., Singh, B.P.: Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites. Carbon N. Y. 152, 631–642 (2019). https://doi.org/10.1016/j.carbon.2019.06.055

    Article  CAS  Google Scholar 

  19. Cheng, C., Zhang, C., Zhou, J., Jiang, M., Sun, Z., Zhou, S., Liu, Y., Chen, Z., Xu, L., Zhang, H., Yu, M.: Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films. Compos. Sci. Technol. 183, (2019). https://doi.org/10.1016/j.compscitech.2019.107827

  20. Xin, W., Sarasini, F., Tirillò, J., Bavasso, I., Sbardella, F., Lampani, L., De Rosa, I.M.: Impact and post-impact properties of multiscale carbon fiber composites interleaved with carbon nanotube sheets. Compos. Part B Eng. 183, (2020). https://doi.org/10.1016/j.compositesb.2019.107711

  21. Saghafi, H., Ghaffarian, S.R., Salimi-Majd, D., Saghafi, H.A.: Investigation of interleaf sequence effects on impact delamination of nano-modified woven composite laminates using cohesive zone model. Compos. Struct. 166, 49–56 (2017). https://doi.org/10.1016/j.compstruct.2017.01.035

    Article  Google Scholar 

  22. Akimoto, A., Shonaike, G.O., Usui, Y., Aoki, Y., Murakami, A., Matsuda, S., Hojo, M., Ochiai, S.: Fracture and Damping of Ionomer Interleaved Epoxy Composites. J. Thermoplast. Compos. Mater. 13, 314–325 (2000). https://doi.org/10.1177/089270570001300404

    Article  CAS  Google Scholar 

  23. Kishi, H., Kuwata, M., Matsuda, S., Asami, T., Murakami, A.: Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos. Sci. Technol. 64, 2517–2523 (2004). https://doi.org/10.1016/j.compscitech.2004.05.006

    Article  CAS  Google Scholar 

  24. Hajer, D., Abderrahim, E.M., Rebiere, J.L., Charfeddin, M., Mohamed, T., Mohamed, H.: Experimental analysis of the linear and nonlinear vibration behavior of flax fibre reinforced composites with an interleaved natural viscoelastic layer. Compos. Part B Eng. 151, 201–214 (2018). https://doi.org/10.1016/j.compositesb.2018.06.015

    Article  CAS  Google Scholar 

  25. Assarar, M., Zouari, W., Ayad, R., Kebir, H., Berthelot, J.M.: Improving the damping properties of carbon fibre reinforced composites by interleaving flax and viscoelastic layers. Compos. Part B Eng. 152, 248–255 (2018). https://doi.org/10.1016/j.compositesb.2018.07.010

    Article  CAS  Google Scholar 

  26. Maccaferri, E., Mazzocchetti, L., Benelli, T., Brugo, T.M., Zucchelli, A., Giorgini, L.: Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates. Mater. Des. 195, 109049 (2020). https://doi.org/10.1016/j.matdes.2020.109049

    Article  CAS  Google Scholar 

  27. Maples, H.A., Smith, O., Burgstaller, C., Robinson, P., Bismarck, A.: Improving the ply/interleaf interface in carbon fibre reinforced composites with variable stiffness. Compos. Sci. Technol. 128, 185–192 (2016). https://doi.org/10.1016/j.compscitech.2016.03.028

    Article  CAS  Google Scholar 

  28. Matsuda, S., Hojo, M., Ochiai, S., Murakami, A., Akimoto, H., Ando, M.: Effect of ionomer thickness on mode I interlaminar fracture toughness for ionomer toughened CFRP. Compos. Part A Appl. Sci. Manuf. 30, 1311–1319 (1999). https://doi.org/10.1016/S1359-835X(99)00023-8

    Article  Google Scholar 

  29. Kalista, S.J., Pflug, J.R., Varley, R.J.: Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym. Chem. 4, 4910 (2013). https://doi.org/10.1039/c3py00095h

    Article  CAS  Google Scholar 

  30. Quan, D., Deegan, B., Alderliesten, R., Dransfeld, C., Murphy, N., Ivanković, A., Benedictus, R.: The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils. Mater. Des. 192, 1–10 (2020). https://doi.org/10.1016/j.matdes.2020.108781

    Article  CAS  Google Scholar 

  31. Zhang, P., Li, G.: Advances in healing-on-demand polymers and polymer composites. Prog. Polym. Sci. 57, 32–63 (2016). https://doi.org/10.1016/j.progpolymsci.2015.11.005

    Article  CAS  Google Scholar 

  32. Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R.: Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 40, 179–211 (2010). https://doi.org/10.1146/annurev-matsci-070909-104532

    Article  CAS  Google Scholar 

  33. Varley, R.J., Zwaag, S.V., Der, : Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. 56, 5737–5750 (2008). https://doi.org/10.1016/j.actamat.2008.08.008

    Article  CAS  Google Scholar 

  34. Varley, R.J., Van der Zwaag, S.: Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym. Test. 27, 11–19 (2008). https://doi.org/10.1016/j.polymertesting.2007.07.013

    Article  CAS  Google Scholar 

  35. Vega, J.M., Grande, A.M., Van Der Zwaag, S., Garcia, S.J.: On the role of free carboxylic groups and cluster conformation on the surface scratch healing behaviour of ionomers. Eur. Polym. J. 57, 121–126 (2014). https://doi.org/10.1016/j.eurpolymj.2014.05.005

    Article  CAS  Google Scholar 

  36. Cheng, F., Hu, Y., Yuan, B., Hu, X., Huang, Z.: Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical Aramid pulp micro/nano-fibers. Compos. Part B Eng. 188, 107897 (2020). https://doi.org/10.1016/j.compositesb.2020.107897

    Article  CAS  Google Scholar 

  37. Quan, D., Bologna, F., Scarselli, G., Ivanković, A., Murphy, N.: Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils. Compos. Sci. Technol. 191, 108065 (2020). https://doi.org/10.1016/j.compscitech.2020.108065

    Article  CAS  Google Scholar 

Download references

Acknowledgement

CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)-Brazil, under grant 140249/2017-6, is gratefully acknowledge for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo de Souza.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Thermoplastic ionomer film was used as midplane interlayer for CFRP and GFRP

• Ionomeric films were melted between the dry preforms before resin infusion

• Different mechanical behavior was observed depending on the reinforcement phase

• Interleaved GFRP presented an increase in 95% on flexural fracture toughness

• Interleaved CFRP presented reduction of in 10% on flexural fracture toughness

• Both interleaved composite systems presented an increasing in damping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, G., Tarpani, J.R. Interleaving CFRP and GFRP with a Thermoplastic Ionomer: The Effect on Bending Properties. Appl Compos Mater 28, 559–572 (2021). https://doi.org/10.1007/s10443-021-09874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09874-2

Keywords

Navigation