Skip to main content
Log in

Modeling the Effect of Oxidation on the Creep Behavior of SiC/PyC/SiC Mini-composites Under Wet Oxygen Atmosphere

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A new model for predicting the creep behavior of SiC/PyC/SiC mini-composites under wet oxygen atmosphere (900 ~ 1200℃, 1% ~ 50%H2O) is developed based on the thermal–mechanical, environmental-micro, fiber strength degradation, and creep-oxidation model. The model firstly takes the effects of the catalysis of water vapor, the oxidation of matrix and interphase, fiber strength degradation due to the grain growing, thermal decomposition, and growth of silica scale, creep of fibers into account comprehensively. The predicted strain–time curves involving three stages presented for the case of a KD-I/PyC/SiC mini-composites are compared to the experimental data at 900℃ under 1%H2O. The model predictions show that the increase of temperature accelerates the consumption of interphase and the growth of silica scale on the fiber, which promotes the failure of fibers by load transfer and fiber degradation. The increase of water vapor pressures promotes the growth of silica scale on the fiber and matrix, but has little influence on the consumption of interphase due to the effect of inhibition of water vapor on the carbon. The effect of creep and oxidation on the matrix crack spacing is checked by the critical matrix strain energy criterion and the results indicate that the creep and oxidation of the mini-composites have no influence on the matrix crack spacing. The application of the method in this work contributes to the analysis of mechanical behavior and failure mechanism of SiCf/SiC structures, such as turbine guide vane, which may serve in the wet oxygen atmosphere for a long period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ding, D., Zhou, W., Luo, F., Chen, M., Zhu, D.: Mechanical properties and oxidation resistance of SiCf/CVI-SiC composites with PIP-SiC interphase. Ceram. Int. 38, 3929–3934 (2012). https://doi.org/10.1016/j.ceramint.2012.01.045

    Article  CAS  Google Scholar 

  2. Chai, Y., Zhou, X., Zhang, H.: Effect of oxidation treatment on KD–II SiC fiber–reinforced SiC composites. Ceram. Int. 43, 9934–9940 (2017). https://doi.org/10.1016/j.ceramint.2017.05.001

    Article  CAS  Google Scholar 

  3. Casas, L., Martínez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behaviour of fibre-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003). https://doi.org/10.1016/S1359-6454(03)00189-7

    Article  CAS  Google Scholar 

  4. Ruggles-Wrenn, M.B., Kurtz, G.: Notch Sensitivity of Fatigue Behavior of a Hi-NicalonTM/SiC-B4C Composite at 1,200 °C in Air and in Steam. Appl. Compos. Mater. 20, 891–905 (2013). https://doi.org/10.1007/s10443-012-9277-4

    Article  Google Scholar 

  5. Morscher, G.N., Cawley, J.D.: Intermediate temperature strength degradationin SiC/SiC composites. J. Eur. Ceram. Soc. 22, 2777–2787 (2002). https://doi.org/10.1016/S0955-2219(02)00144-9

    Article  CAS  Google Scholar 

  6. Morscher, G.N., Hurst, J., Brewer, D.: Intermediate-Temperature Stress Rupture of a Woven Hi-Nicalon, BN-Interphase, SiC-Matrix Composite in Air. J. Am. Ceram. Soc. 83, 1441–1449 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01408.x

    Article  CAS  Google Scholar 

  7. Chermant, J.L., Boitier, G., Darzens, S., Farizy, G., Vicens, J., Sangleboeuf, J.C.: The creep mechanism of ceramic matrix composites at low temperature and stress, by a material science approach. J. Eur. Ceram. Soc. 22, 2443–2460 (2002). https://doi.org/10.1016/S0955-2219(02)00103-6

    Article  CAS  Google Scholar 

  8. Carrère, P., Lamon, J.: Creep behaviour of a SiC/Si-B-C composite with a self-healing multilayered matrix. J. Eur. Ceram. Soc. 23, 1105–1114 (2003). https://doi.org/10.1016/S0955-2219(02)00273-X

    Article  Google Scholar 

  9. Naslain, R.R., Pailler, R.J.-F., Lamon, J.L.: Single- and Multilayered Interphases in SiC/SiC Composites Exposed to Severe Environmental Conditions: An Overview. Int. J. Appl. Ceram. Technol. 7, 263–275 (2010). https://doi.org/10.1111/j.1744-7402.2009.02424.x

    Article  CAS  Google Scholar 

  10. Filipuzzi, L., Naslain, R.: Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II. Modeling. J. Am. Ceram. Soc. 77, 467–480 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb07016.x

    Article  CAS  Google Scholar 

  11. Singhal, S.C.: Oxidation kinetics of hot-pressed silicon carbide. J. Mater. Sci. 11, 1246–1253 (1976). https://doi.org/10.1007/BF00545142

    Article  CAS  Google Scholar 

  12. Heredia, F.E., McNulty, J.C., Zok, F.W., Evans, A.G.: Oxidation Embrittlement Probe for Ceramic-Matrix Composites. J. Am. Ceram. Soc. 78, 2097–2100 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08621.x

    Article  CAS  Google Scholar 

  13. Evans, A.G., Zok, F.W., McMeeking, R.M., Du, Z.Z.: Models of High-Temperature, Environmentally Assisted Embrittlement in Ceramic-Matrix Composites. J. Am. Ceram. Soc. 79, 2345–2352 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08982.x

    Article  CAS  Google Scholar 

  14. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos. Part A Appl. Sci. Manuf. 30, 549–554 (1999). https://doi.org/10.1016/S1359-835X(98)00148-1

    Article  Google Scholar 

  15. Yu, G., Gao, X., Chen, Y., Song, Y.: Failure Modeling of SiC/SiC Mini-Composites in Air Oxidizing Environments. Appl. Compos. Mater. 25, 1441–1454 (2018). https://doi.org/10.1007/s10443-018-9676-2

    Article  CAS  Google Scholar 

  16. Darzens, S., Chermant, J.-L., Vicens, J., Sangleboeuf, J.-C.: Understanding of the creep behavior of SiCf–SiBC composites. Scr. Mater. 47, 433–439 (2002). https://doi.org/10.1016/S1359-6462(02)00114-8

    Article  CAS  Google Scholar 

  17. Chen, X., Sun, Z., Li, H., Song, Y., Niu, X.: Modeling the effect of oxidation on the residual tensile strength of SiC/C/SiC minicomposites in stressed oxidizing environments. J. Mater. Sci. 55, 3388–3407 (2020). https://doi.org/10.1007/s10853-019-04255-4

    Article  CAS  Google Scholar 

  18. Jorgensen, P.J., Wadsworth, M.E., Cutler, I.B.: Effects of Water Vapor on Oxidation of Silicon Carbide. J. Am. Ceram. Soc. 44, 258–261 (1961). https://doi.org/10.1111/j.1151-2916.1961.tb15374.x

    Article  CAS  Google Scholar 

  19. Opila, E.J.: Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen. J. Am. Ceram. Soc. 77, 730–736 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05357.x

    Article  CAS  Google Scholar 

  20. Sun, Z., Shao, H., Niu, X., Song, Y.: Simulation of Mechanical Behaviors of Ceramic Composites Under Stress-Oxidation Environment While Considering the Effect of Matrix Cracks. Appl. Compos. Mater. 23, 477–494 (2016). https://doi.org/10.1007/s10443-015-9469-9

    Article  CAS  Google Scholar 

  21. Cappelen, H.,  Johansen, K.H, K.M.: Oxidation of silicon carbide in oxygen and in water vapor at 1500° C. Acta. Chem. Scand. Ser. A. 35, 247–254 (1981). https://doi.org/10.3891/acta.chem.scand.35a-0247

  22. Parthasarathy, T.A., Cox, B., Sudre, O., Przybyla, C., Cinibulk, M.K.: Modeling environmentally induced property degradation of SiC/BN/SiC ceramic matrix composites. J. Am. Ceram. Soc. 101, 973–997 (2018). https://doi.org/10.1111/jace.15325

    Article  CAS  Google Scholar 

  23. Opila, E.J.: Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure. J. Am. Ceram. Soc. 82, 625–636 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01810.x

    Article  CAS  Google Scholar 

  24. Takeda, M., Sakamoto, J., Imai, Y., Ichikawa, H.: Thermal stability of the low-oxygen-content silicon carbide fiber. Hi-NicalonTM. Compos. Sci. Technol. 59, 813–819 (1999). https://doi.org/10.1016/S0266-3538(99)00012-3

    Article  CAS  Google Scholar 

  25. Gosset, D., Colin, C., Jankowiak, A., Vandenberghe, T., Lochet, N.: X-ray Diffraction Study of the Effect of High-Temperature Heat Treatment on the Microstructural Stability of Third-Generation SiC Fibers. J. Am. Ceram. Soc. 96, 1622–1628 (2013). https://doi.org/10.1111/jace.12174

    Article  CAS  Google Scholar 

  26. Grujicic, M., Galgalikar, R., Snipes, J.S., Ramaswami, S.: Multi-length-scale Material Model for SiC/SiC Ceramic-Matrix Composites (CMCs): Inclusion of In-Service Environmental Effects. J. Mater. Eng. Perform. 25, 199–219 (2016). https://doi.org/10.1007/s11665-015-1850-1

    Article  CAS  Google Scholar 

  27. Helmer, T., Peterlik, H., Kromp, K.: Coating of Carbon Fibers—The Strength of the Fibers. J. Am. Ceram. Soc. 78, 133–136 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08372.x

    Article  CAS  Google Scholar 

  28. Ochiai, S., Hojo, M., Tanaka, M.: Mechanical interactions between fiber and cracked coating layer and their influences on fiber strength. Compos. Part A Appl. Sci. Manuf. 30, 451–461 (1999). https://doi.org/10.1016/S1359-835X(98)00134-1

    Article  Google Scholar 

  29. Curtin, W.A.: Theory of Mechanical Properties of Ceramic-Matrix Composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06852.x

    Article  CAS  Google Scholar 

  30. Evans, A.G., Weber, C.: Creep damage in SiC/SiC composites. Mater. Sci. Eng. A. 208, 1–6 (1996). https://doi.org/10.1016/0921-5093(95)09867-4

    Article  Google Scholar 

  31. Sha, J.J., Park, J.S., Hinoki, T., Kohyama, A.: Bend stress relaxation of advanced SiC-based fibers and its prediction to tensile creep. Mech. Mater. 39, 175–182 (2007). https://doi.org/10.1016/j.mechmat.2006.04.001

    Article  Google Scholar 

  32. Weibull, W.: A statistical distribution of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    Article  Google Scholar 

  33. Xiaowei, Y.: Oxiadation Behavior of 3D C/SiC Composites in Oxidizing Environments, (2017)

  34. Terrani, K.A., Pint, B.A., Parish, C.M., Silva, C.M., Snead, L.L., Katoh, Y.: Silicon Carbide Oxidation in Steam up to 2 MPa. J. Am. Ceram. Soc. 97, 2331–2352 (2014). https://doi.org/10.1111/jace.13094

    Article  CAS  Google Scholar 

  35. C Yue: Creep Mechanics Behavior and Mesoscopic Mechanics Simulation of CMCs, (2017)

  36. Zhu, S., Mizuno, M., Kagawa, Y., Mutoh, Y.: Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Compos. Sci. Technol. 59, 833–851 (1999). https://doi.org/10.1016/S0266-3538(99)00014-7

    Article  Google Scholar 

  37. Zhang, S., Gao, X., Chen, J., Dong, H., Song, Y.: Strength model of the matrix element in SiC/SiC composites. Mater. Des. 101, 66–71 (2016). https://doi.org/10.1016/j.matdes.2016.03.166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China, the National Natural Science Foundation of China [grant number 51675266]; the Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_0314]; the Fundamental Research Funds for the Central Universities [grant number NJ20160038]; the Jiangsu Planned Projects for Postdoctoral Research Funds(2019K029) and the Jiangsu Province Key Laboratory of Aerospace Power System [grant number CEPE2019004] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Sun or Yingdong Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, W., Sun, Z. et al. Modeling the Effect of Oxidation on the Creep Behavior of SiC/PyC/SiC Mini-composites Under Wet Oxygen Atmosphere. Appl Compos Mater 28, 297–319 (2021). https://doi.org/10.1007/s10443-021-09870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09870-6

Keywords

Navigation