Skip to main content
Log in

Temperature Dependence of Resin Flow in a Resin Film Infusion (RFI) Process by Ultrasound Imaging

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Ultrasonic imaging in the C-scan mode was used in conjunction with the amplitude of the reflected signal to measure the temperature dependence of resin flow rate in single layers of woven carbon fabric. The RFI samples were vacuum-bagged and scanned in a water tank at 50°C, 60°C, 70°C, and 80°C. The measured flow rates were plotted versus inverse viscosity to determine the permeability in the thin film, non-saturated system. The permeability values determined in this work were consistent with permeability values reported in the literature. Capillary flow was not observed at the temperatures and times required for pressurized flow to occur. The flow rate at 65°C was predicted from the measured flow rates, and then measured in a 10-layer laminate. The investigation demonstrates that ultrasonic imaging in the C-scan mode in conjunction with the amplitude of the reflected signal is an effective method for measuring resin flow through fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Palmer, R.J.: Resin impregnation process. US Patent # 4,311,611, January 19, (1982)

  2. Johnson, F.C., Newsam, S.M.: Method of manufacturing articles from a composite material. US Patent # 4,562,033, December 31, (1985)

  3. Thorfinnson, B., Biermann, T.F.: Degree of impregnation of prepregs – effect on porosity. 32nd Int. SAMPE Symp. April 6–9, 1500–1509 (1987)

  4. Hirschbuehler, K.R.: An advanced composite resin offering flexibility in processing conditions. 37th Int. SAMPE Symp. March 9–12, 452–461 (1992)

  5. Breitigam, W.V., Bauer, R.S., May, C., 4: Novel processing and cure of epoxy resin systems. Polymer (Guildf.) 34, 767–771 (1993). doi:10.1016/0032-3861(93)90361-D

    Article  CAS  Google Scholar 

  6. Hartness, J.T., Xu, G.F.: Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom. US Patent # 6,139,942, October 31, (2000)

  7. Xu, G.F., Repecka, L., Mortimer, S., Peake, S., Boyd, J.: Manufacture of void-free laminates and use thereof. US Patent # 6,391,436, May 21, (2002)

  8. Hartness, J.T., Xu, G.F.: Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom. US Patent # 6,565,944, May 20, (2003)

  9. Steele, M., Corden, T.: New prepregs for cost effective out-of-autoclave tool and component manufacture. SAMPE J 40(2), 30–34 (2004)

    Google Scholar 

  10. Klosterman, D.A., Saliba, T.E.: Development of an on-line, in-situ fiber-optic void sensor. J. Thermoplast. Compos. Mater. 7, 219–229 (1994). doi:10.1177/089270579400700304

    Article  CAS  Google Scholar 

  11. Drapier, S., Monatte, J., Elbouazzaoui, O., Henrat, P.: Characterization of transient through-thickness permeabilities of non crimp new concept (NC@) multiaxial fabrics. Compos. Part A Appl. Sci. Manuf. 36, 877–892 (2005)

    Article  Google Scholar 

  12. Antonucci, V., Giordano, M., Nicolais, L., Calabro, A., Cusano, A., Cutolo, A., Inserra, S.: Resin flow monitoring in resin film infusion process. J. Mater. Process. Technol. 143–144, 687–692 (2003). doi:10.1016/S0924-0136(03)00338-8

    Article  Google Scholar 

  13. Stöven, T., Weyrauch, F., Mitschang, P., Neitzel, M.: Continuous monitoring of three-dimensional resin flow through a fiber preform. Compos. Part A Appl. Sci. Manuf. 34, 475–480 (2003)

    Article  Google Scholar 

  14. Metals Handbook, A.S.M.: Desk Edition, 2nd ed., 1283 (1998)

  15. Thomas, S., Nutt, S.R., Bongiovanni, C.: In situ estimation of through-thickness resin flow using ultrasound. Compos. Sci. Technol. 68, 3093–3098 (2008). doi:10.1016/j.compscitech.2008.07.012

    Article  CAS  Google Scholar 

  16. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. de Jussieu, Hist. de I’. Acadimie R. Sci. 1733, 351–358 (1856)

    Google Scholar 

  17. Chan, A.W., Hwang, S.T.: Anisotropic in-plane permeability of fabric media. Polym. Eng. Sci. 31(16), 1233–1239 (1991). doi:10.1002/pen.760311613

    Article  CAS  Google Scholar 

  18. Elbouazzaoui, O., Drapier, S., Henrat, P.: An experimental assessment of the saturated transverse permeability of non-crimped new concept (nc2) multiaxial fabrics. J. Compos. Mater. 39(13), 1169–1193 (2005). doi:10.1177/0021998305048746

    Article  Google Scholar 

  19. Wang, Y., Grove, S.M.: Modeling microscopic flow in woven fabric reinforcements and its application to dual-scale resin infusion modeling. Compos. Part A Appl. Sci. Manuf. 39, 843–855 (2008)

    Article  Google Scholar 

  20. Kuentzer, N., Simacek, P., Advani, S.G., Walsh, S.: Permeability characterization of dual scale fibrous porous media. Compos. Part A Appl. Sci. Manuf. 37, 2057–2068 (2006)

    Article  Google Scholar 

  21. Ma, Y., Shishoo, R.: Permeability characterization of different architectural fabrics. J. Compos. Mater. 33(8), 729–751 (1999)

    CAS  Google Scholar 

  22. Pearce, N.R.L., Guild, F.J., Summerscsales, J.: The use of automated image analysis for the investigation of fabric architecture on the processing and properties of fiber-reinforced composites produced by RTM. Compos. Part A Appl. Sci. Manuf. 29, 829–837 (1998)

    Article  Google Scholar 

  23. Dungan, F.D., Sastry, A.M.: Saturated and unsaturated polymer flows: microphenomena and modeling. J. Compos. Mater. 36(13), 1581–1602 (2002). doi:10.1177/0021998302036013179

    Article  CAS  Google Scholar 

  24. Gutowski, T.G., Cai, Z., Bauer, S., Boucher, D.: Consolidation experiments for laminate composites. J. Compos. Mater. 21(7), 651–669 (1987). doi:10.1177/002199838702100705

    Article  Google Scholar 

  25. Åström, B.T., Pipes, R.B., Advani, S.G.: On flow through aligned fiber beds and its application to composites processing. J. Compos. Mater. 26(9), 1351–1372 (1992). doi:10.1177/002199839202600907

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Cytec Engineered Materials, Inc., which also donated the materials used. Cytec provided the viscosity data. The authors are grateful to Chris Bongiovanni and Jack Boyd of Cytec Engineered Materials, Inc. for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S., Nutt, S.R. Temperature Dependence of Resin Flow in a Resin Film Infusion (RFI) Process by Ultrasound Imaging. Appl Compos Mater 16, 183–196 (2009). https://doi.org/10.1007/s10443-009-9086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9086-6

Keywords

Navigation