Skip to main content
Log in

Theoretical Assessment of the Impact of Water Stress on Plants Production: Case of Banana-Plantain

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the role of water stress on plants production. We propose a mathematical model for the dynamics growth of plants that takes into account the concentration of available water in the soil, water stress, plant production and plants compensation. Sensitivity analysis of the model has been performed in order to determine the impact of related parameters on the dynamics growth of plants. We present the theoretical analysis of the model with and without water stress. More precisely, we show that the full model is well-posedness. For each model, we compute the trivial equilibria and derive two thresholds parameters that determine the outcome of water stress within a plantation. Further, we perform numerical simulation on the case of banana-plantain simulations to support the theory. We found that the Hopf bifurcation occurs for a specific value of the water absorption rate of unstressed plants. The impact of the water stress on the banana-plantain production is also numerically investigated. After, the role of the water stress on the plant production is numerically investigated. We found that the water stress can cause about 68.16% of loss of banana-plantain production within a plantation with 1600 rejets initially planted. This suggests that climate change plays a detrimental role on banana-plantains production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10:191–205. https://doi.org/10.1007/s10142-009-0149-4

    Article  Google Scholar 

  • Adeleke M, Pillay M, Okoli B (2004) The relationships between meiotic irregularities and Fer-Tility in diploid and triploid Musa L. Cytologia 69:387–393

    Article  Google Scholar 

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:30–313

    Article  Google Scholar 

  • Aleksandar C (2019) Stabilising the Metzler matrices with applications to dynamical systems.arXiv:1901.05522v1

  • Allan B, Robooni T, Delphine A, Brigitte U (2017) Bananas and Plantains (Musa spp.). https://doi.org/10.1007/978-3-319-59819-2., pp.219-240

  • Anne V, Gregorio E (2014) Modeling plant transpiration under limited soil water comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric Forest Meteorol 191:22–32

    Article  Google Scholar 

  • Ashwani Pareek, Parkash Dhankher Om, Foyer Christine H (2020) Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J Exp Botany 71:451–456

    Article  Google Scholar 

  • Askinglot. How many plantain can I plant per acre? https://askinglot.com/how-many-plantain-can-i-plant-per-acre. Visit on 15/04/2021

  • Bertrand N, Roux S, Forey O, Guinet M, Wery J (2018) Simulating plant water stress dynamics in a wide range of bi-specific agrosystems in a region using the BISWAT model. Eur J Agron. https://doi.org/10.1016/j.eja.2018.06.001

    Article  Google Scholar 

  • Bhattacharyya R, Madhava Rao VN (1995) Water requirement, crop coefficient efficiency of ‘Robusta’ banana under covers and soil moisture regimes and water-use different soil. Scientia Horticulturae 25(3):263–269

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448. https://doi.org/10.1126/science.218.4571.44

    Article  Google Scholar 

  • Burlando L (1991) Monotonicity of spectral radius for positive operators on ordered Banach spaces. Arch der Math 56:49–57

    Article  Google Scholar 

  • Carr J (1981) Applications centre manifold theory. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1:361–404

    Article  Google Scholar 

  • Castillo-Chavez C, Feng Z, Huang W (2002) On the computation of \({\cal{R}}_{0}\) and its role on global stability. math.la.asu.edu/JB276.pdf

  • Debdas M (2019) Stochastic model for crop water stress during agricultural droughts. Eng Rep 1:12081. https://doi.org/10.1002/eng2.12081

    Article  Google Scholar 

  • FAO (2017) Food and Agriculture Organization of the United Nations. Banana market review. http://www.fao.org/economic/est/est-commodities/bananas/en/

  • FAO; UNICEF; WFP; WHO (2018) The state of food security and nutrition in the world (2017): building resilience for peace and food security. Rome, Italy, Food and Agriculture Organization of the United Nations (FAO)

  • FAOSTAT (2012) Food and Agriculture Organization of the United Nations. Statistics Division, http://faostat.fao.org/

  • fellahtrade. Bananier,https://www.fellah-trade.com/fr/filiere-vegetale/fiches-techniques/bananier. Visit on 29/04/2021

  • Grover A, Kapoor A, Lakshmi OS, Agarwal S, Sahi C, Agarwal K, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Current Sci 80:206–216

    Google Scholar 

  • Hsieh YH, Van Driessche P, Wang L (2007) Impact of travel between patches for spatial spread of disease. Bull Math Biol 69:1355–1375

    Article  Google Scholar 

  • Iyyakutty R, Mayil V (2016) Abiotic stress tolerance in banana. Springer, Berlin, pp 207–222

    Google Scholar 

  • Jagdish (2018) Banane Forming Projet Report, Cost and Profit Detail.

  • Kamarudin MH, Ismail ZH, Saidi NB (2021) Deep learning sensor fusion in plant water stress assessment: a comprehensive review. Appl Sci 2021(11):1403. https://doi.org/10.3390/app11041403

    Article  Google Scholar 

  • Karen M, Paul C, Jarrod H Rice Growth and Development, https://www.uaex.edu/publications/pdf/mp192/chapter-2.pdf. Visit on 29/04/2021

  • Kumpati S, Robert S (2009) A characterization of the Hurwitz stability of Metzler matrices. IEEE Xplore. https://doi.org/10.1109/ACC.2009.5160435

    Article  Google Scholar 

  • Legit. Long plantains, https://www.legit.ng/1150513-how-long-plantains -grow-from-planting-harvesting.html . Visited on 29/04/2021

  • Marek I (1970) Frobenius theory of positive operators: comparison theorems and applications. SIAM J Appl Math 3:607–628

    Article  Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Introduction to plant stresses. Plant stress tolerance. Springer briefs in systems biology. Springer, Cham

    Google Scholar 

  • Niranjan P, Andrew J, Thompson A, Sergio Z, Jerry W, Knox A (2021) Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae 276:109735. https://doi.org/10.1016/j.scienta.2020.109735

    Article  Google Scholar 

  • Okolle JN, Fansi GH, Lombi FM, Lang PS, Loubana PM (2009) Banana entomological research in Cameroon: how far and what next? Afr J Plant Sci Biotechnol 3(1):1–19

    Google Scholar 

  • Poveda K, Gomes MI, Kessler A (2012) The enemy ‘ as ally: herbivore-induced increase in crop yield. Ecol Appl 20:1787–1793

    Article  Google Scholar 

  • Rubia-Sanchez E, Suzuki Y, Miyamoto K, Watanabe T (1999) The potential for compensation of the effects of the brown planthopper Nilaparvata lugens stal (homoptera: Delphacidae) feeding on rice. Crop Protection 18:39–45

    Article  Google Scholar 

  • Sallet G, Kamgang JC (2008) Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE). Math Biosci 213:1–12

    Article  Google Scholar 

  • Saltelli A et al (1999) A quantitative model-independent method for global sensitivity analysis of model output, technometrics. J Stat Physi Chem Eng Sci 41(1):39–56

    Google Scholar 

  • Saltelli A et al (2004) Sensitivity analysis in practice. A guide to assessing scientific models. John Wiley, New York

    Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

    Article  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat: dynamics of microbial competition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Song Y, Birch C, Qu S, Doherty A, Hanan J (2010) Analysis and modelling of the effects of water stress on maize growth and yield in dryland conditions. Plant Prod Sci 13(2):199–208

    Article  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  Google Scholar 

  • Surendar KK, Devi DD, Ravi I, Krishnakumar S, Kumar SR, Velayudham K (2013) Impact of water deficit on photosynthetic pigments and yield of banana cultivars and hybrids. Plant Gene and Trait 4:17–24

    Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137(3):791–793

    Article  Google Scholar 

  • Thomson VP, Cunningham SA, Ball MC, Nico-tra AB (2003) Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134:167–175

    Article  Google Scholar 

  • Thornley JHM (1996) Modelling water in crops and plant ecosystems. Ann Botany 77:261–275

    Article  Google Scholar 

  • Wu G, Zhang C, Chu LY, Shao HB (2007) Responses of higher plants to abiotic stresses and agricultural sustainable development. J Plant Interact 2:135–147

    Article  Google Scholar 

  • WWF. Water Scarcity, https://www.worldwildlife.org/threats/water-scarcity Visit on 28/06/2023

  • Yuriko O, Keishi O, Kazuo SM, Lamp-Son P (2014) Response of plants to water stress. Front Plant Sci 13(5):86. https://doi.org/10.3389/fpls.2014.00086

    Article  Google Scholar 

  • Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020) Systemic signaling during abiotic stress combination in plants. Proc National Acad Sci 117(24):13810–13820. https://doi.org/10.1073/pnas.2005077117

    Article  Google Scholar 

  • Zhang H, Li Y, Zhu JK (2018) Developing naturally stress-resistant crops for a sustainable agriculture. Nat Plants 4:989–996. https://doi.org/10.1038/s41477-018-0309-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the African Institute for Mathematical Sciences, www.nexteinstein.org, with financial support from the Government of Canada, provided through Global Affairs Canada, www.international.gc.ca, and the International Development Research Centre, www.idrc.ca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Bowong.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.

Here, we prove Lemma 3.

Using the first equation of system (9), one has that

$$\begin{aligned} {\dot{E}}_s(t)&= r_1E_s(t)(1-\dfrac{E_s(t)}{K_1})-a_1(P_v(t)+P_M(t)+P_s(t))E_s(t){ V(t)}- \mu _1E_s(t),\\&\le r_1E_s(t)(1-\dfrac{E_s(t)}{K_1})-\mu _1E_s(t),\\&\le (r_1-\mu _1)E_s(t)-\dfrac{r_1}{K_1}(E_{s}(t))^{2}. \end{aligned}$$

Let

$$\begin{aligned} \dot{M(t)}=(r_1-\mu _1)M(t)-\dfrac{r_1}{K_1}M^{2}(t). \end{aligned}$$

Solving the above equation gives

$$\begin{aligned} M(t)=\dfrac{K_1(r_1-\mu _1)}{r_1+K_1(r_1-\mu _1)C_1\exp (-(r_1-\mu _1))}, \end{aligned}$$

where \(C_1\) is gives in Eq. (17). This implies that \(\forall t\ge 0\)

$$\begin{aligned} M(t)\le \dfrac{K_1(r_1-\mu _1)}{r_1} = K_1\left( 1-\dfrac{\mu _1}{r_1}\right) =E_{s}^{0} \end{aligned}$$

Using the comparison theorem (SMITH et al. 1995), one has \(E_{s}(t)\le K_1\left( 1-\dfrac{\mu _1}{r_1}\right) =E_{s}^{0}\) for all \(t\ge 0\) since \(E_{s}(0)=M(0)\), \(\forall t\ge 0\).

Then, for system (9), one can conclude that \(E_s\le E_{s}^{0}\) for all \(t\ge 0\). This concludes the proof. \(\square\)

Appendix B: Comparison Theorem

In this Appendix, we recall the comparaison theorem that has been used to prove the global asymptotic stability of the trivial equilibrium point \(Q_{0}^{(2)}\) of system (9).

Theorem 6

Marek (1970); Burlando (1991) Let E be an ordered Banach space with normal and generating positive cone \(C_p\) and let \(A_1\) and \(A_2\) be positive operators in L(EE) ( the space of all linear and continuous operators on E) such that \(A_1 \le A_2\). Then \(\rho (A_1) \le \rho (A_2)\).

Appendix C: Proof of Theorem 3

In this appendix, we give the proof of Theorem 3 on the local asymptotic stability of the non trivial equilibrium equilibrium point \(Q^*\) of system (9). In order to apply the theorem of Castillo-Chavez and Song (2004), the following simplification and change of variables are first of all made. Let \((z_1, z_2, z_3) = (E_s, P_v, P_M)\). Then, system (9) can be written in the following compact form:

$$\begin{aligned} {\dot{z}}=f(z), \end{aligned}$$

with \(f=(f_1, f_2, f_3)\) as follows:

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{z_1} ~=~ r_1\left( z_1+E_{s}^{0}\right) \left( 1-\dfrac{z_1}{K_1}\right) -a_1(z_2+z_3)\left( z_1+E_{s}^{0}\right) - \mu _1\left( z_1+E_{s}^{0}\right) =f_1,\\ \dot{z_{2}} ~=~r_2ea_{1}\left( z_1+E_{s}^{0}\right) z_3\left( 1-\dfrac{z_2}{K_2}\right) -(\alpha _1+\mu _2)z_2=f_2,\\ \dot{z_{3}} ~=~\alpha _1z_2-\mu _3z_3=f_3. \end{array} \right. \end{aligned}$$
(39)

The Jacobian of system (39) at \(Q_{0}^{(2)}\) is

\(J(Q_{0}^{(2)})= \left( \begin{array}{cccccc} \mu _1-r_1&{} -a_1E_{s}^{0}&{} -a_1E_{s}^{0}\\ 0&{} -(\alpha _1+\mu _2)&{} r_2ea_{1}E_{s}^{0}\\ 0&{} \alpha _1&{} -\mu _3 \\ \end{array}\right) ,\)

It follows that the Jacobian \(J(Q_{0}^{(2)})\) of system (39) at the trivial equilibrium point \(Q_{0}^{(2)}\), with \(\alpha _1 = \alpha _1^*\), denoted by \(J_{\alpha _1^*}\), has a simple zero eigenvalue (with all other eigenvalues having negative real parts). Hence, the Center Manifold Theory (Carr 1981) can be used to analyze the dynamics of system (39). In particular, the Theorem of Castillo-Chavez and Song (2004), reproduced below for convenience, will be used to show that when \({\mathcal {N}}_{0}^{(1)} >1\), there exists a unique non trivial equilibrium point of system (39) (as shown in Lemma 4) which is locally asymptotically stable for \({\mathcal {N}}_{0}^{(1)}\) near 1.

Consider the case when \({\mathcal {N}}_{0}^{(1)}=1\). Suppose further, that \(\alpha _1=\alpha _1^*\) is chosen as a bifurcation parameter solving \({\mathcal {N}}_{0}^{(1)}=1\) gives

$$\begin{aligned} \alpha _1=\alpha _1^*=\dfrac{\mu _2\mu _3}{r_2ea_{1}E_{s}^{0}-\mu _3}. \end{aligned}$$
(40)

Theorem 7

Castillo-Chavez and Song (2004) : Consider the following general system of ordinary differential equations with parameter \(\phi\):

$$\begin{aligned} \dfrac{dz}{dt}=f(z,\phi ), \quad f: {\mathbb {R}}^{n}\times {\mathbb {R}} \rightarrow {\mathbb {R}} \quad and \quad f\in {\mathcal {C}}^{2}({\mathbb {R}}^{n},{\mathbb {R}}), \end{aligned}$$
(41)

where 0 is an equilibrium point of the system (that is, \(f(0;\phi ) \equiv 0\) for all \(\phi\)) and assume

\(A_1\)::

\(A=D_zf(0,0)=\frac{\partial f_i}{\partial z_j}(0,0)\) is the linearisation matrix of system (41) around the equilibrium 0 with a evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;

\(A_2\)::

Matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue. Let \(f_k\) be the \(k^{th}\) component of f and

$$\begin{aligned} \begin{array}{lcl} {\tilde{a_1}}&{}=&{}\sum \limits _{k,i,j=1}^{n}v_{k}u_{i}u_{j}\frac{\partial ^{2}f_{k}}{\partial z_{i}\partial z_j}(0,0),\\ {\tilde{b_1}}&{}=&{}\sum \limits _{i,k=1}^{n} v_ku_i\frac{\partial ^{2}f_k}{\partial z_i \partial \phi }(0,0). \end{array} \end{aligned}$$
(42)

The local dynamics of system (41) around 0 are totally determined by \(a_1\) and \(b_1\)

  1. (i)

    \({\tilde{a_1}>0}, {\tilde{b_1}>0}.\) When \(\phi <0\) with \(|\phi |\ll 1\), 0 is locally asymptotically stable, and there exists a positive unstable equilibrium; when \(0< \phi \ll 1\), 0 is unstable and there exists a negative and locally asymptotically stable equilibrium;

  2. (ii)

    \({\tilde{a_1}<0}, {\tilde{b_1}<0}\). When \(\phi <0\) with \(|\phi |\ll 1\), 0 is unstable; when \(0<\phi \ll 1\), 0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

  3. (iii)

    \({\tilde{a_1}>0}, {\tilde{b_1}<0}\). When \(\phi <0\) with \(|\phi |\ll 1\), 0 is unstable, and there exists a locally asymptotically stable negative equilibrium; when \(0 <\phi \ll 1\), 0 is stable, and a positive unstable equilibrium appears;

  4. (iv)

    \({\tilde{a_1}<0},{\tilde{b_1}>0}\). When \(\phi\) changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

Eigenvectors of \(J_{\alpha _{1}}\) for the cure when \({\mathcal {N}}_{0}^{(1)}=1\) it can be shown that the Jacobian \(J_{\alpha _{1}}\) of system (39) at \(\alpha _1=\alpha _1^*\) has a right eigenvector (corresponding to zero eigenvalues given by \(u =(u_1, u_2, u_3)^{T}\) are given by

$$\begin{aligned} u_1=\dfrac{a_1E_{s}^{0}}{\mu _1-r_1}\left( 1+\dfrac{\alpha _1}{\mu _3}\right) u_2, \qquad u_2> 0 \quad \text {and} \quad u_3=\dfrac{\alpha _1}{\mu _3}u_2. \end{aligned}$$
(43)

Similarly, the left eigenvector of \(J(Q_{0}^{(2)})\) (corresponding to the zero eigenvalue denoted by \(v=(v_1, v_2, v_3)^{T}\) are given by

$$\begin{aligned} v_1=0, \qquad v_2=\dfrac{\alpha _1}{\alpha _1+\mu _2}v_3 \quad \text {and} \quad v_3>0. \end{aligned}$$
(44)

\({{{\underline{\textit{\textbf{Computation of}}}}} \tilde{b_1}}:\) For system (39), the associated non-zero partial derivatives of f at \(Q_{0}^{(2)}\) are given by

$$\begin{aligned} \dfrac{\partial ^{2}f_2}{\partial z_2 \partial \alpha _1}=-1 \quad \text {and} \quad \dfrac{\partial ^{2}f_3}{\partial z_2 \partial \alpha _1}=1. \end{aligned}$$
(45)

Then, it follows that

$$\begin{aligned} {\tilde{b_1}}&=\sum _{i,k=1}^{3} v_ku_i\frac{\partial ^{2}f_k}{\partial z_i \partial \alpha _1}(0,0),\\&=v_2u_2\dfrac{\partial ^{2}f_2}{\partial z_2 \partial \alpha _1}+v_3u_2\dfrac{\partial ^{2}f_3}{\partial z_2 \partial \alpha _1},\\&=\left( v_3-v_2\right) u_2,\\&=\left( v_3-\dfrac{\alpha _1}{\alpha _1+\mu _2}v_3\right) u_2,\\&=\left( 1-\dfrac{\alpha _1}{\alpha _1+\mu _2}\right) u_2v_3>0. \end{aligned}$$

\({{{\underline{\varvec{Computation of:}}}} {\tilde{a_1}}}\) For system (39), the associated non-zero partial derivatives of f at \(Q_{0}^{2}\) are given by

$$\begin{aligned} \dfrac{\partial ^{2}f_2}{\partial z_2 \partial z_3}=\dfrac{\partial ^{2}f_2}{\partial z_3\partial z_2}=-2\dfrac{r_2ea_{1}E_{s}^{0}}{K_2}\quad \text {and} \quad \dfrac{\partial ^{2}f_2}{\partial z_1\partial z_3}=\dfrac{\partial ^{2}f_2}{\partial z_3\partial z_1 }=ea_1r_2. \end{aligned}$$
(46)

Then, it follows that

$$\begin{aligned} {\tilde{a_1}}&=\sum _{k,i,j=1}^{3}v_{k}u_{i}u_{j}\frac{\partial ^{2}f_{k}}{\partial z_{i}\partial z_j}(0,0),\\&=v_2\sum _{i,j=1}^{3}u_{i}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{i}\partial z_j}(0,0),\\&=v_2u_1\sum _{j=1}^{3}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{1}\partial z_j}(0,0)+v_2u_2\sum _{j=1}^{3}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{2}\partial z_j}(0,0)+v_2u_3\sum _{j=1}^{3}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{3}\partial z_j}(0,0),\\&=2v_2\left( u_1u_3\dfrac{\partial ^{2}f_2}{\partial z_1\partial z_3}(0,0) + 2u_2u_3\dfrac{\partial ^{2}f_2}{\partial z_2\partial z_3}(0,0)\right) ,\\&=2ea_1r_2v_2u_3\left( \dfrac{a_1E_{s}^{0}}{\mu _1-r_1}\left( 1+\dfrac{\alpha _1}{\mu _3}\right) u_2 -2\dfrac{E_{s}^{0}}{K_2}u_2\right) ,\\&=-2ea_1r_2v_2u_3\left( \dfrac{a_1K_1}{r_1}\left( 1+\dfrac{\alpha _1}{\mu _3}\right) u_2 +2\dfrac{E_{s}^{0}}{K_2}u_2\right) ,\\&=-2ea_1r_2v_2u_{2}^{2}\dfrac{\alpha _1}{\mu _3}\left( \dfrac{a_1K_1}{r_1}\left( 1+\dfrac{\alpha _1}{\mu _3}\right) +2\dfrac{E_{s}^{0}}{K_2}\right) <0. \end{aligned}$$

Thus, \({\tilde{a_1}<}0\) and from Theorem 3 the non trivial equilibrium \(Q^{*}\) of system (9) is locally asymptotically stable when \({\mathcal {N}}_{0}^{(1)}>1\). This achieves the proof. \(\square\)

Appendix D

Herein, we present a result used for the stability of the trivial equilibrium \(Q_{0}^{(22)}\) of system (23).

Lemma 7

Let M be a square Metzler matrix written in block form

$$\begin{aligned} M=\left( \begin{array}{cc} A&{} B\\ C&{} D \end{array}\right) , \end{aligned}$$

where A and D are square matrices. Then, the matrix M is Metzler stable if and only if matrices. A and \(D-CA^{-1}B\) (or D and \(A-CD^{-1}B\)) are Metzler stable (Aleksandar 2019; Kumpati and Robert 2009).

Appendix E: Proof of Theorem 5

We will prove this theorem using a result by Castillo-Chavez and Song in Castillo-Chavez and Song (2004). To do this, we do the following change of variables: \((z_1, z_2, z_3, z_4, z_5) = (E_s, P_v, P_M, P_s, V)\). In this case, system (23) can be written in the following compact form:

$$\begin{aligned} {\dot{z}}=f(z), \end{aligned}$$

where \(f=(f_1, f_2, f_3, f_4, f_5)\) is defined as follows:

$$\begin{aligned} \left\{ \begin{array}{ll} \dot{z_1} ~=~ r_1\left( z_1+E_{s}^{0}\right) \left( 1-\dfrac{z_1+E_{s}^{0}}{K_1}\right) -a_1(z_2+z_3+z_4)\left( z_1+E_{s}^{0}\right) { \left( z_5+1\right) }- \mu _1\left( z_1+E_{s}^{0}\right) =f_1,\\ \dot{z_{2}} ~=~r_2ea_{1}\left( z_1+E_{s}^{0}\right) (z_3+z_4)\left( 1-\dfrac{z_2}{K_2}\right) -(\alpha _1+\mu _2)z_2-\delta (K-ea_1\left( z_1+E_{s}^{0}\right) )z_2=f_2,\\ \dot{z_{3}} ~=~ \alpha _1z_2-\mu _3z_3=f_3,\\ \dot{z_{4}} ~=~\delta (K-ea_1\left( z_1+E_{s}^{0}\right) )z_2-\left( \mu _4+\dfrac{\theta }{1+ea_1\left( z_1+E_{s}^{0}\right) z_4}\right) z_4=f_4,\\ \dot{z_{5}} ~=~\alpha z_5+\beta z_4=f_5. \end{array} \right. \end{aligned}$$
(47)

Consider the case when \({\mathcal {N}}_{0}^{(2)}=1\). Suppose further, that \(\alpha _1=\alpha _1^*\) is chosen as a bifurcation parameter solving \({\mathcal {N}}_{0}^{(2)}=1\) gives

$$\begin{aligned} \alpha _1=\alpha _1^*=\dfrac{(\mu _4+\theta )\mu _3\left( \mu _2+\delta (K-ea_1E_{s}^{0})\right) -\delta r_2ea_{1}E_{s}^{0}\mu _3(K-ea_1E_{s}^{0})}{r_2ea_{1}E_{s}^{0}(\mu _4+\theta )-(\mu _4+\theta )\mu _3} \end{aligned}$$
(48)

The Jacobian of system (47) at \(Q_{0}^{(22)}\) is

\(J(Q_{0}^{(22)})=\left( \begin{array}{ccccccc} \mu _1-r_1&{} -a_1E_{s}^{0}&{} -a_1E_{s}^{0}&{} -a_1E_{s}^{0}&{} r_1E_{s}^{0} -\dfrac{r_1}{K_1}E_{s}^{0}\\ 0&{} -(\alpha _1+\delta (K-ea_1E_{s}^{0})+\mu _2)&{} r_2ea_{1}E_{s}^{0}&{} r_2ea_{1}E_{s}^{0}&{} 0\\ 0&{} \alpha _1&{} -\mu _3&{} 0&{} 0 \\ 0&{} \delta (K-ea_1E_{s}^{0})&{} 0&{} -(\mu _4+\theta )&{} 0\\ 0&{} 0&{} 0&{} \beta &{} -\alpha \\ \end{array}\right) ,\)

Eigenvectors of \(J_{a^{*}}\) for the cure when \({\mathcal {N}}_{0}^{(2)}=1\) it can be shown that the Jacobian \(J_{a^{*}}\) of system (47) at \(\alpha _1=\alpha _1^{*}\) has a right eigenvector (corresponding to zero eigenvalues given by \(u=(u_1, u_2, u_3, u_4, u_5)^{T}\) are given by

$$\begin{aligned}{} & {} u_1=\dfrac{1}{\mu _1-r_1}\left[ a_1E_{s}^{0}+\dfrac{ea_1\alpha _1E_{s}^{0}}{\mu _3}+\dfrac{ea_1\delta E_{s}^{0}(K-ea_1E_{s}^{0})}{\mu _4+\theta }-\dfrac{\beta \delta (K-ea_1E_{s}^{0})}{\alpha (\mu _4+\theta )}\left( r_1E_{s}^{0}-\dfrac{r_1}{K_1}E_{s}^{0}\right) \right] u_2, \qquad u_2> 0, \end{aligned}$$
(49)
$$\begin{aligned}{} & {} u_3=\dfrac{\alpha _1}{\mu _3}u_2, \qquad u_4= \dfrac{\delta (K-ea_1E_{s}^{0})}{\mu _4+\theta }u_2 \quad \text {and} \quad u_5=\dfrac{\beta \delta (K-ea_1E_{s}^{0})}{\alpha (\mu _4+\theta )}u_2. \end{aligned}$$
(50)

Similarly, the left eigenvector of \(J(Q_{0}^{(22)})\) (corresponding to the zero eigenvalue denoted by \(v=(v_1, v_2, v_3, v_4, v_5)^{T}\) are given by

$$\begin{aligned} v_1=0, \qquad v_2>0,\qquad v_3=\dfrac{r_2ea_{1}E_{s}^{0}}{\mu _3}v_2, \qquad v_4=\dfrac{r_2ea_{1}E_{s}^{0}}{(\mu _4+\theta )}v_2 \quad \text {and} \quad v_5=0. \end{aligned}$$
(51)

\({{{\underline{\varvec{Computation of}}}} {\tilde{b_1}}}\): For system (47), the associated non-zero partial derivatives of f at \(Q_{02}\) are given by

$$\begin{aligned} \dfrac{\partial ^{2}f_2}{\partial z_2 \partial \alpha _1}=-1 \quad \text {and} \quad \dfrac{\partial ^{2}f_3}{\partial z_2 \partial \alpha _1}=1. \end{aligned}$$
(52)

Then, it follows that

$$\begin{aligned} {\tilde{b_1}}&=\sum _{i,k=1}^{5} v_ku_i\frac{\partial ^{2}f_k}{\partial z_i \partial \alpha _1}(0,0),\\&=v_2u_2\dfrac{\partial ^{2}f_2}{\partial z_2 \partial \alpha _1}+v_3u_2\dfrac{\partial ^{2}f_3}{\partial z_2 \partial \alpha _1},\\&=\left( v_3-v_2\right) u_2,\\&=\left( \dfrac{r_2ea_{1}E_{s}^{0}}{\mu _3}-1\right) u_2v_2>0. \end{aligned}$$

\({{{\underline{\varvec{Computation of:}}}} {\tilde{a_1}}}\) For model system (47), the associated non-zero partial derivatives of f at \(Q_{02}\) are given by

$$\begin{aligned} \dfrac{\partial ^{2}f_2}{\partial z_3\partial z_1}=\dfrac{\partial ^{2}f_2}{\partial z_1\partial z_3}=r_2ea_1,\ \dfrac{\partial ^{2}f_2}{\partial z_4\partial z_1}=\dfrac{\partial ^{2}f_2}{\partial z_1\partial z_4}=r_2ea_1, \ \dfrac{\partial ^{2}f_2}{\partial z_3\partial z_2}=\dfrac{\partial ^{2}f_2}{\partial z_2\partial z_3}=-\dfrac{r_2}{K_2}ea_1E_{s}^{0}, \end{aligned}$$
(53)

and

$$\begin{aligned} \dfrac{\partial ^{2}f_2}{\partial z_4\partial z_2}=\dfrac{\partial ^{2}f_2}{\partial z_2\partial z_4}=-\dfrac{r_2}{K_2}ea_1E_{s}^{0}, \ \dfrac{\partial ^{2}f_2}{\partial z_4\partial z_3}=\dfrac{\partial ^{2}f_2}{\partial z_3\partial z_4}=-\dfrac{r_2}{K_2}ea_1E_{s}^{0},\ \dfrac{\partial ^{2}f_4}{\partial z_2\partial z_1}=\dfrac{\partial ^{2}f_4}{\partial z_1\partial z_2}=-\delta ea_1, \ \dfrac{\partial ^{2}f_4}{\partial ^{2}z_4}=\theta . \end{aligned}$$
(54)

Then, it follows that

$$\begin{aligned} \begin{array}{lcl} {\tilde{a_1}}&{}=&{}\sum _{k,i,j=1}^{5}v_{k}u_{i}u_{j}\frac{\partial ^{2}f_{k}}{\partial z_{i}\partial z_j}(0,0),\\ &{}=&{}v_2\sum _{i,j=1}^{5}u_{i}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{i}\partial z_j}(0,0)+v_4\sum _{i,j=1}^{5}u_{i}u_{j}\frac{\partial ^{2}f_{4}}{\partial z_{i}\partial z_j}(0,0),\\ &{}=&{}v_2u_1\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{1}\partial z_j}(0,0)+v_2u_2\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{2}\partial z_j}(0,0)+v_2u_3\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{3}\partial z_j}(0,0)+v_2u_4\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{2}}{\partial z_{4}\partial z_j}(0,0),\\ &{}+&{}v_4u_1\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{4}}{\partial z_{1}\partial z_j}(0,0)+v_4u_2\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{4}}{\partial z_{2}\partial z_j}(0,0)+v_4u_4\sum _{j=1}^{5}u_{j}\frac{\partial ^{2}f_{4}}{\partial z_{4}\partial z_j}(0,0),\\ &{}=&{}2v_2\left( u_3u_1\dfrac{\partial ^{2}f_2}{\partial z_3\partial z_1}+u_4u_1\dfrac{\partial ^{2}f_2}{\partial z_4\partial z_1}+u_3u_2\dfrac{\partial ^{2}f_2}{\partial z_3\partial z_2}+u_4u_2\dfrac{\partial ^{2}f_2}{\partial z_4\partial z_2}+u_4u_3\dfrac{\partial ^{2}f_2}{\partial z_4\partial z_3}\right) \\ &{}+&{} 2v_4\left( u_2u_1\dfrac{\partial ^{2}f_4}{\partial z_1\partial z_2}+u_{4}^{2}\dfrac{\partial ^{2}f_4}{\partial z_4\partial z_4}\right) ,\\ &{}=&{}2v_2\left[ r_2ea_1u_1u_3+r_2ea_1u_1u_4-\dfrac{r_2}{K_2}ea_1E_{s}^{0}u_2u_3-\dfrac{r_2}{K_2}ea_1E_{s}^{0}u_4u_2-\dfrac{r_2}{K_2}ea_1E_{s}^{0}u_4u_3 \right] +2v_4\left[ -\delta ea_1u_1u_2+\theta u_{4}^{2}\right] . \end{array} \end{aligned}$$
(55)

Thus, depending on the values of the parameters of system (23), the value of \({\tilde{a_1}}\) can be positive or negative. So, since \({\tilde{b_1}}> 0\), the conclusion follows from Theorem (Castillo-Chavez and Song 2004) items (i) and (iv). \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadje, C.K., Yakam, A.N., Bowong, S. et al. Theoretical Assessment of the Impact of Water Stress on Plants Production: Case of Banana-Plantain. Acta Biotheor 71, 24 (2023). https://doi.org/10.1007/s10441-023-09473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10441-023-09473-7

Keywords

Navigation