Skip to main content
Log in

Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration feedback effect

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is devoted to a mathematical model with diffusion and cross-diffusion to describe the interaction between vegetation and soil water. First, the existence of Hopf bifurcation and cross-diffusion-driven Turing instability are discussed. Then, based on the nonlinear analysis, we obtain the exact parameters range for stationary patterns and show the dynamical behavior near Turing bifurcation point. It is found that the model has the properties of gap, strip and spot patterns. Moreover, the small water-uptake ability of vegetation roots promotes the growth of vegetation and the transitions of vegetation pattern. But with the continuous increase of the water-uptake ability of vegetation roots, the local vegetation biomass density increases and the isolation between vegetation patches also increases, which may induce the emergence of desertification. In addition, our results reveal that the water consumption rate induces the transitions of vegetation pattern and prohibits the increase of vegetation biomass density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gilad, E., von Hardenberg, J., Provenzale, A., et al.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93(9), 098105 (2004)

    Article  Google Scholar 

  2. Tarnita, C.E., Bonachela, J.A., Sheffer, E., et al.: A theoretical foundation for multi-scale regular vegetation patterns. Nature 541(7637), 398–401 (2017)

    Article  Google Scholar 

  3. Liu, Q., Herman, P.M.J., Mooij, W.M., et al.: Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5(1), 5234 (2014)

    Article  Google Scholar 

  4. Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012)

    Article  Google Scholar 

  5. Reynolds, J.F., Stafford Smith, D.M., Lambin, E.F., et al.: Global desertification: building a science for dryland development. Science 316(5826), 847–851 (2007)

    Article  Google Scholar 

  6. Zhang, J., Guan, Q., Qinqin, D., et al.: Spatial and temporal dynamics of desertification and its driving mechanism in Hexi region. Land Degrad. Dev. 33(17), 3539–3556 (2022)

    Article  Google Scholar 

  7. Yue, Y., Geng, L., Li, M.: The impact of climate change on aeolian desertification: a case of the agro-pastoral ecotone in northern China. Sci. Total Environ. 859, 160126 (2023)

    Article  Google Scholar 

  8. Xu, X., Liu, L., Han, P., et al.: Accuracy of vegetation indices in assessing different grades of grassland desertification from UAV. Int. J. Environ. Res. Public Health 19(24), 16793 (2022)

    Article  Google Scholar 

  9. Guo, G., Zhao, S., Wang, J., et al.: Positive steady-state solutions for a water-vegetation model with the infiltration feedback effect. Discrete Continuous Dyn. Syst. B 29, 426–458 (2023)

    Article  MathSciNet  Google Scholar 

  10. Gowda, K., Riecke, H., Silber, M.: Transitions between patterned states in vegetation models for semiarid ecosystems. Phys. Rev. E 89(2), 022701 (2014)

    Article  Google Scholar 

  11. Rietkerk, M., Bastiaansen, R., et al.: Evasion of tipping in complex systems through spatial pattern formation. Science 374(6564), 169-+ (2021)

    Article  Google Scholar 

  12. Sun, G., Zhang, H., et al.: Mathematical modeling and mechanisms of pattern formation in ecological systems: a review. Nonlinear Dyn. 104(2), 1677–1696 (2021)

    Article  Google Scholar 

  13. Klausmeier: Regular and irregular patterns in semiarid vegetation. Science 284(5421), 1826–1828 (1999)

    Article  Google Scholar 

  14. Sun, G., Wang, C., Chang, L., et al.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sun, G., Zhang, H., Song, Y., et al.: Dynamic analysis of a plant-water model with spatial diffusion. J. Differ. Equ. 329, 395–430 (2022)

    Article  MathSciNet  Google Scholar 

  16. Sherratt, J.A., Synodinos, A.D.: Vegetation patterns and desertification waves in semi-arid environments: mathematical models based on local facilitation in plants. Discrete Continuous Dyn. Syst. Ser. B 17(8), 2815–2827 (2012)

    Article  MathSciNet  Google Scholar 

  17. HilleRisLambers, R., Rietkerk, M., van den Bosch, F., et al.: Vegetation pattern formation in semi-arid grazing systems. Ecology 82(1), 50–61 (2001)

    Article  Google Scholar 

  18. Shnerb, N.M., Sarah, P., Lavee, H., et al.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90(3), 038101 (2003)

    Article  Google Scholar 

  19. Wang, X., Shi, J., Zhang, G.: Interaction between water and plants: rich dynamics in a simple model. Discrete Continuous Dyn. Syst. Ser. B 22(7), 2971–3006 (2017)

    Article  MathSciNet  Google Scholar 

  20. Song, D., Li, C., Song, Y.: Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response. Nonlinear Anal. Real World Appl. 54, 103106 (2020)

    Article  MathSciNet  Google Scholar 

  21. Lv, Y.: Turing–Hopf bifurcation in the predator-prey model with cross-diffusion considering two different prey behaviours transition. Nonlinear Dyn. 107(1), 1357–1381 (2022)

    Article  Google Scholar 

  22. Zhang, F., Li, Y., Zhao, Y., et al.: Vegetation pattern formation and transition caused by cross-diffusion in a modified vegetation-sand model. Int. J. Bifurc. Chaos 32(05), 2250069 (2022)

    Article  MathSciNet  Google Scholar 

  23. Kerner, E.H.: A statistical mechanics of interacting biological species. Bull. Math. Biophys. 19(2), 121–146 (1957)

    Article  MathSciNet  Google Scholar 

  24. von Hardenberg, J., Meron, E., Shachak, M., et al.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87(19), 198101 (2001)

    Article  Google Scholar 

  25. Su, R., Zhang, C.: Pattern dynamical behaviors of one type of tree-grass model with cross-diffusion. Int. J. Bifurc. Chaos 32(04), 2250051 (2022)

    Article  MathSciNet  Google Scholar 

  26. Wang, X., Wang, W., Zhang, G.: Vegetation pattern formation of a water-biomass model. Commun. Nonlinear Sci. Numer. Simul. 42, 571–584 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gilad, E., Shachak, M., Meron, E.: Dynamics and spatial organization of plant communities in water-limited systems. Theor. Popul. Biol. 72(2), 214–230 (2007)

    Article  Google Scholar 

  28. Liu, Q., Jin, Z., Li, B.: Numerical investigation of spatial pattern in a vegetation model with feedback function. J. Theor. Biol. 254(2), 350–360 (2008)

    Article  MathSciNet  Google Scholar 

  29. Liu, C., Li, L., Wang, Z., et al.: Pattern transitions in a vegetation system with cross-diffusion. Appl. Math. Comput. 342, 255–262 (2019)

    MathSciNet  Google Scholar 

  30. Djilali, S.: Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect. Int. J. Biomath. 13(4), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  31. Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments IV: slowly moving patterns and their stability. SIAM J. Appl. Math. 73(1), 330–350 (2013)

    Article  MathSciNet  Google Scholar 

  32. Tzou, J.C., Tzou, L.: Analysis of spot patterns on a coordinate-invariant model for vegetation on a curved terrain. SIAM J. Appl. Dyn. Syst. 19(4), 2500–2529 (2020)

    Article  MathSciNet  Google Scholar 

  33. Xue, Q., Liu, C., Li, L., et al.: Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments. Appl. Math. Comput. 399, 126038 (2021)

    MathSciNet  Google Scholar 

  34. Sun, G., Wang, C., Chang, L., et al.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  Google Scholar 

  35. Gowda, K., Chen, Y., Iams, S., Silber, M.: Assessing the robustness of spatial pattern sequences in a dryland vegetation model. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2187), 20150893 (2016)

    MathSciNet  Google Scholar 

  36. Sun, G., Zeyan, W., Wang, Z., et al.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83(1–2), 811–819 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12301634, 12061081, 61872227, 12126420). The authors wish to express grateful thanks to the anonymous referees for their careful reading and some valuable comments and suggestions which greatly improved this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the research and manuscript.

Corresponding authors

Correspondence to Gaihui Guo or Youhui Su.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Consent for publication

It is not under consideration for publication elsewhere. And its publication has been approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the National Natural Science Foundation of China (12301634, 12061081, 61872227, 12126420).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Zhao, S., Pang, D. et al. Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration feedback effect. Z. Angew. Math. Phys. 75, 33 (2024). https://doi.org/10.1007/s00033-023-02167-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02167-7

Keywords

Mathematics Subject Classification

Navigation