Skip to main content
Log in

Sequence Data, Phylogenetic Inference, and Implications of Downward Causation

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Framing systematics as a field consistent with scientific inquiry entails that inferences of phylogenetic hypotheses have the goal of producing accounts of past causal events that explain differentially shared characters among organisms. Linking observations of characters to inferences occurs by way of why-questions implied by data matrices. Because of their form, why-questions require the use of common-cause theories. Such theories in phylogenetic inferences include natural selection and genetic drift. Selection or drift can explain ‘morphological’ characters but selection cannot be causally applied to sequences since fitness differences cannot be directly associated with individual nucleotides or amino acids. The relation of selection to sequence data is by way of downward or top-down causation from those phenotypes upon which selection occurs. The application of phylogenetic inference to explain sequence data is thus restricted to instances where drift is the relevant theory; those nucleotides or amino acids that can be explained via downward causation are precluded from inclusion in the data matrix. The restrictions on the inclusion of sequence data in phylogenetic inferences equally apply to species hypotheses, precluding the more restrictive approach known as DNA barcoding. Not being able to discern drift and selection as relevant causal mechanisms can severely constrain the inclusion and explanations of sequence data. Implications of such exclusion are discussed in relation to the requirement of total evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achinstein P (1970) Inference to scientific laws. In: Stuewer RH (ed) Volume V: historical and philosophical perspectives of science. Minnesota studies in the philosophy of science. University of Minnesota Press, Minneapolis, pp 87–111

    Google Scholar 

  • Aliseda A (2006) Abductive reasoning: logical investigations into discovery and explanation. Springer, Dordrecht

    Google Scholar 

  • Auletta G, Ellis GFR, Jaeger L (2008) Top-down causation by information control: from a philosophical problem to a scientific research programme. J R Soc Interface 5:1159–1172

    Article  Google Scholar 

  • Baker VR (1996) Hypotheses and geomorphological reasoning. In: Rhoads BL, Thorn CE (eds) The scientific nature of geomorphology: proceedings of the 27th Binghamton symposium in geomorphology held 27–29 September 1996. Wiley, New York, pp 57–85

    Google Scholar 

  • Baldwin CC, Weigt LA (2012) A new species of soapfish (Teleostei: Serranidae: Rypticus), with redescription of R. subbifrenatus and comments on the use of DNA barcoding in systematic studies. Copeia 2012:23–36

    Article  Google Scholar 

  • Barker SF (1957) Induction and hypothesis. Cornell University Press, New York

    Google Scholar 

  • Barnes E (1994) Why P rather than Q? The curiosities of fact and foil. Philos Stud 73:35–53

    Article  Google Scholar 

  • Baum DA, Smith SD (2013) Tree thinking: an introduction to phylogenetic biology. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  • Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22:437–446

    Article  Google Scholar 

  • Bromberger S (1966) Why-questions. In: Colodny RG (ed) Mind and cosmos: essays in contemporary science and philosophy. University of Pittsburgh series in the philosophy of science, 3. University of Pittsburgh Press, Pittsburgh, pp 86–111

  • Burton RB (2000) The problem of control in abduction. Trans Charles S. Peirce Soc 36:149–156

    Google Scholar 

  • Campbell DT (1974) Downward causation in hierarchically organized biological systems. In: Ayala FJ, Dobzhansky T (eds) Studies in the philosophy of biology: reduction and related problems. University of California Press, Berkeley, pp 179–186

    Chapter  Google Scholar 

  • Carnap R (1950) Logical foundations of probability. University of Chicago Press, Chicago

    Google Scholar 

  • Castalanelli MA, Teale R, Rix MG, Kennington WJ, Harvey MS (2014) Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebr Syst 28:375–385

    Google Scholar 

  • Cleland CE (2001) Historical science, experimental science, and the scientific method. Geology 29:987–990

    Article  Google Scholar 

  • Cleland CE (2002) Methodological and epistemic differences between historical science and experimental science. Philos Sci 69:474–496

    Article  Google Scholar 

  • Cleland CE (2009) Philosophical issues in natural history and its historiography. In: Tucker A (ed) A companion to the philosophy of history and historiography. Wiley-Blackwell, Oxford, pp 44–62

    Chapter  Google Scholar 

  • Cleland CE (2011) Prediction and explanation in historical natural science. Br J Philos Sci 62:551–582

    Article  Google Scholar 

  • Cleland CE (2013) Common cause explanation and the search for a smoking gun. Geol Soc Spec Pap 502:1–9

    Google Scholar 

  • Curd MV (1980) The logic of discovery: an analysis of three approaches. In: Nickles T (ed) Scientific discovery, logic and rationality. D. Reidel Publishing Company, Dordrecht, pp 201–219

    Chapter  Google Scholar 

  • Davies PCW (2012) The epigenome and top-down causation. Interface Focus 2:42–48

    Article  Google Scholar 

  • de Regt HW, Leonelli S, Eigner K (2009) Focusing on scientific understanding. In: de Regt H, Leonelli S, Eigner K (eds) Scientific understanding: philosophical perspectives. University of Pittsburgh Press, Pittsburgh, pp 1–17

  • DeBry RW (1992) The consistency of several phylogeny-inference methods under varying evolutionary rates. Mol Biol Evol 9:537–551

    Google Scholar 

  • Ellis GFR (2008) On the nature of causation in complex systems. Trans R Soc S Afr 63:69–84

    Article  Google Scholar 

  • Ellis GFR (2012) Top-down causation and emergence: some comments on mechanisms. Interface Focus 2:126–140

    Article  Google Scholar 

  • Ellis G (2013) Time to turn cause and effect on their heads. New Sci 2930:28–29

    Google Scholar 

  • Ellis GFR, Noble D, O’Connor T (2011) Top-down causation: An integrating theme within and across the sciences? Interface Focus 2:1–3

    Article  Google Scholar 

  • Fann KT (1970) Peirce’s theory of abduction. Martinus Nijhoff, The Hague

    Book  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Fetzer JH (1993) Philosophy of science. Paragon House, New York

    Google Scholar 

  • Fetzer JH, Almeder RF (1993) Glossary of epistemology/philosophy of science. Paragon House, New York

    Google Scholar 

  • Fitzhugh K (2005a) Les bases philosophiques de l’inférence phylogénétique: une vue d’ensemble. Biosystema 24:83–105

    Google Scholar 

  • Fitzhugh K (2005b) The inferential basis of species hypotheses: the solution to defining the term ‘species’. Mar Ecol 26:155–165

    Article  Google Scholar 

  • Fitzhugh K (2006a) The abduction of phylogenetic hypotheses. Zootaxa 1145:1–110

    Google Scholar 

  • Fitzhugh K (2006b) The ‘requirement of total evidence’ and its role in phylogenetic systematics. Biol Philos 21:309–351

    Article  Google Scholar 

  • Fitzhugh K (2006c) The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zool Scr 35:261–286

    Article  Google Scholar 

  • Fitzhugh K (2008a) Fact, theory, test and evolution. Zool Scr 37:109–113

    Article  Google Scholar 

  • Fitzhugh K (2008b) Abductive inference: implications for ‘Linnean’ and ‘phylogenetic’ approaches for representing biological systematization. Evol Biol 35:52–82

    Article  Google Scholar 

  • Fitzhugh K (2008c) Clarifying the role of character loss in phylogenetic inference. Zool Scr 37:561–569

    Article  Google Scholar 

  • Fitzhugh K (2009) Species as explanatory hypotheses: refinements and implications. Acta Biotheor 57:201–248

    Article  Google Scholar 

  • Fitzhugh K (2010) Evidence for evolution versus evidence for intelligent design: parallel confusions. Evol Biol 37:68–92

    Article  Google Scholar 

  • Fitzhugh K (2012) The limits of understanding in biological systematics. Zootaxa 3435:40–67

    Google Scholar 

  • Fitzhugh K (2013) Defining ‘species’, ‘biodiversity’, and ‘conservation’ by their transitive relations. In: Pavlinov IY (ed) The species problem—ongoing problems. InTech, New York, pp 93–130

    Google Scholar 

  • Fitzhugh K (2014) Character mapping and cladogram comparison versus the requirement of total evidence: Does it matter for polychaete systematics? Mem Mus Vic 71:67–78

    Google Scholar 

  • Fitzhugh K (2015) What are species? Or, on asking the wrong question. Festivus 47:229–239

    Google Scholar 

  • Fitzhugh K (in press) Dispelling five myths about hypothesis testing in biological systematics. Org Divers Evol  

  • Godfrey-Smith P (2003) Theory and reality: an introduction to the philosophy of science. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47:9–17

    Article  Google Scholar 

  • Griffiths P, Stotz K (2013) Genetics and philosophy: an introduction. Cambridge University Press, New York

    Book  Google Scholar 

  • Hacking I (2001) An introduction to probability and inductive logic. Cambridge University Press, New York

    Book  Google Scholar 

  • Hanson NR (1958) Patterns of discovery: an inquiry into the conceptual foundations of science. Cambridge University Press, New York

    Google Scholar 

  • Hausman DM (1998) Causal asymmetries. Cambridge University Press, New York

    Book  Google Scholar 

  • Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46:239–257

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321

    Article  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janze DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Acad Sci USA 101:14812–14817

    Article  Google Scholar 

  • Hedtke SM, Morgan MJ, Cannatella DC, Hillis DM (2013) Targeted enrichment: maximizing orthologous gene comparisons across deep evolutionary time. PLoS ONE 8:e67908. doi:10.1371/journal.pone.0067908

    Article  Google Scholar 

  • Hempel CG (1962) Deductive nomological vs. statistical explanation. In: Feigl H, Maxwell G (eds) Minnesota studies in the philosophy of science, vol 3. University of Minnesota Press, Minneapolis, pp 98–169

    Google Scholar 

  • Hempel CG (1965) Aspects of scientific explanation and other essays in the philosophy of science. The Free Press, New York

    Google Scholar 

  • Hempel CG (1966) Recent problems of induction. In: Colodny RG (ed) Mind and cosmos. University of Pittsburgh Press, Pittsburgh, pp 112–134

    Google Scholar 

  • Hempel CG (2001) The philosophy of Carl G. Hempel: studies in science, explanation, and rationality. In: Fetzer JH (ed). Oxford University Press, New York

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hey J (1999) The neutralist, the fly and the selectionist. TREE 14:35–38

    Google Scholar 

  • Hillis DM (1995) Approaches for assessing phylogenetic accuracy. Syst Biol 44:3–16

    Article  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    Article  Google Scholar 

  • Hoffmann M (1999) Problems with Peirce’s concept of abduction. Found Sci 4:271–305

    Article  Google Scholar 

  • Hoyningen-Huene P (2013) Systematicity: the nature of science. Oxford University Press, New York

    Book  Google Scholar 

  • Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487

    Article  Google Scholar 

  • Jaeger L, Calkins ER (2011) Downward causation by information control in micro-organisms. Interface Focus 2:26–41

    Article  Google Scholar 

  • Jeffares B (2008) Testing times: regularities in the historical sciences. Stud Hist Philos Biol Biomed Sci 39:469–475

    Article  Google Scholar 

  • Josephson JR, Josephson SG (eds) (1994) Abductive inference: computation, philosophy, technology. Cambridge University Press, New York

    Google Scholar 

  • Kelly T (2008) Common sense as evidence: against revisionary ontology and skepticism. Midwest Stud Philos 32:53–78

    Article  Google Scholar 

  • Koonin EV (2012) The logic of chance: the nature and origin of biological evolution. FTS Press, Upper Saddle River

    Google Scholar 

  • Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayrs proximate-ultimate dichotomy still useful? Science 334:1512–1516

    Article  Google Scholar 

  • Lavelle JS, Botterill G, Lock S (2013) Contrastive explanation and the many absences problem. Synthese 190:3495–3510

    Article  Google Scholar 

  • Lipton P (2004) Inference to the best explanation. Routledge, New York

    Google Scholar 

  • Lloyd EA (1988) The structure and confirmation of evolutionary theory. Princeton University Press, Princeton

    Google Scholar 

  • Magnani L (2001) Abduction, reason, and science: processes of discovery and explanation. Kluwer Academic, New York

    Book  Google Scholar 

  • Mahner M, Bunge M (1997) Foundations of biophilosophy. Springer, New York

    Book  Google Scholar 

  • Martínez M, Moya A (2011) Natural selection and multi-level causation. Philos Theory Biol 3:e202

    Google Scholar 

  • Martínez M, Esposito M (2014) Multilevel causation and the extended synthesis. Biol Theory 9:209–220

    Article  Google Scholar 

  • Marwick P (1999) Interrogatives and contrasts in explanation theory. Philos Stud 96:183–204

    Article  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  Google Scholar 

  • McLaughlin A (1970) Rationality and total evidence. Philos Sci 37:271–278

    Article  Google Scholar 

  • Mitchell A (2011) DNA barcoding is useful for taxonomy: a reply to Ebach. Zootaxa 2772:67–68

    Google Scholar 

  • Neta R (2008) What evidence do you have? Br J Philos Sci 59:89–119

    Article  Google Scholar 

  • Nickles T (1980) Introductory essay: scientific discovery and the future of philosophy of science. In: Nickles T (ed) Scientific discovery, logic and rationality. D. Reidel Publishing Company, Dordrecht, pp 1–59

    Chapter  Google Scholar 

  • Nola R, Sankey H (2007) Theories of scientific method: an introduction. McGill-Queen’s University Press, Ithaca

    Google Scholar 

  • Norton JD (2003) A material theory of induction. Philos Sci 70:647–670

    Article  Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Oxford University Press, New York

    Book  Google Scholar 

  • Okasha S (2012) Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus 2:49–54

    Article  Google Scholar 

  • Peirce CS (1878) Illustrations of the logic of science. Sixth paper.—Deduction, induction, and hypothesis. Pop Sci Mon 13:470–482

  • Peirce CS (1902) Reasoning. In: Baldwin JA, Rand B (eds) Dictionary of philosophy and psychology: prefatory note. Text, Le-Z. Addenda: indices. I. Greek terms. II. Latin terms. III. German terms. IV. French terms. V. Italian terms. The Macmillan Company, New York, pp 426–428

  • Peirce CS (1931) Collected papers of Charles Sanders Peirce, volume 1, principles of philosophy. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1932) Collected papers of Charles Sanders Peirce, volume 2, elements of logic. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1933a) Collected papers of Charles Sanders Peirce, volume 3, exact logic. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1933b) Collected papers of Charles Sanders Peirce, volume 4, the simplest mathematics. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1934) Collected papers of Charles Sanders Peirce, volume 5, pragmatism and pragmaticism. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1935) Collected papers of Charles Sanders Peirce, volume 6, scientific metaphysics. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1958a) Collected papers of Charles Sanders Peirce, volume 7, science and philosophy. In: Hartshorne C, Weiss P, Burks A (eds). Harvard University Press, Cambridge

  • Peirce CS (1958b) Collected papers of Charles Sanders Peirce, volume 8, correspondence and bibliography. In: Burks A (ed). Harvard University Press, Cambridge

  • Petrov DA (2014) Searching for adaptation in the genome. In: Losos JB, Baum DA, Futuyma DJ, Hoekstra HE, Lenski RE, Moore AJ, Peichel CL, Schluter D, Whitlock MC (eds) The Princeton guide to evolution. Princeton University Press, Princeton, pp 466–474

  • Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:e1000602

    Article  Google Scholar 

  • Popper KR (1983) Objective knowledge: an evolutionary approach. Oxford University Press, New York

    Google Scholar 

  • Popper KR (1992) Realism and the aim of science. Routledge, New York

    Google Scholar 

  • Psillos S (2002) Simply the best: a case for abduction. In: Kakas AC, Sadri F (eds) Computational logic: logic programming and beyond. Springer, New York, pp 605–625

    Chapter  Google Scholar 

  • Psillos S (2007) Philosophy of science A-Z. University Press, Edinburgh

    Google Scholar 

  • Psillos S (2011) An explorer upon untrodden ground: Peirce on abduction. In: Gabbay D, Hartmann S, Woods J (eds) The handbook of the history of logic, vol 10., inductive logicElsevier B. V, Oxford, pp 117–151

    Google Scholar 

  • Reilly FE (1970) Charles Peirce’s theory of scientific method. Fordham University Press, New York

    Google Scholar 

  • Rescher N (1970) Scientific explanation. The Free Press, New York

    Google Scholar 

  • Rescher N (1978) Peirce’s philosophy of science: critical studies in his theory of induction and scientific method. University of Notre Dame Press, Notre Dame

  • Ronquist F, van der Mark P, Huelsenbeck JP (2009) Bayesian phylogenetic analysis using MrBayes. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, New York, pp 210–266

    Chapter  Google Scholar 

  • Salmon WC (1967) The foundations of scientific inference. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Salmon WC (1984a) Scientific explanation and the causal structure of the world. Princeton University Press, Princeton

    Google Scholar 

  • Salmon WC (1984b) Logic. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Salmon WC (1989) Four decades of scientific explanation. In: Kitcher P, Salmon WC (eds) Scientific explanation. Minnesota studies in the philosophy of science, vol XIII. University of Minnesota Press, Minneapolis, pp 3–219

    Google Scholar 

  • Salmon WC (1998) Causality and explanation. Oxford University Press, New York

    Book  Google Scholar 

  • Salthe SN (1985) Evolving hierarchical systems: their structure and representation. Columbia University Press, New York

    Google Scholar 

  • Sawyer SA (1994) Inferring selection and mutation from DNA sequences: the McDonald–Kreitman test revisited. In: Golding B (ed) Non-neutral evolution: theories and molecular data. Springer, Dordrecht, pp 77–87

    Chapter  Google Scholar 

  • Schmidt HA, von Haeseler A (2009) Phylogenetic inference using maximum likelihood methods. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge University Press, New York, pp 181–198

    Chapter  Google Scholar 

  • Schurz G (2005) Explanations in science and the logic of why-questions: discussion of the Halonen–Hintikka-approach and alternative proposal. Synthese 143:149–178

    Article  Google Scholar 

  • Schurz G (2008) Patterns of abduction. Synthese 164:201–234

    Article  Google Scholar 

  • Sintonen M (2004) Reasoning to hypotheses: Where do questions come? Found Sci 9:249–266

    Article  Google Scholar 

  • Smith MA, Bertrand C, Crosby K, Eveleigh ES, Fernandez-Triana J, Fisher BL, Gibbs J, Hajibabaei M, Hallwachs W, Hind K, Hrcek J, Huang D-W, Janda M, Janzen DH, Li Y, Miller SE, Packer L, Quicke D, Ratnasingham S, Rodriguez J, Rougerie R, Shaw MR, Sheffield C, Stahlhut JK, Steinke D, Whitfield J, Wood M (2012) Wolbachia and DNA barcoding insects: patterns, potential, and problems. PLoS ONE 7:e36514

    Article  Google Scholar 

  • Sober E (1975) Simplicity. Oxford University Press, New York

    Book  Google Scholar 

  • Sober E (1984) The nature of selection: evolutionary theory in philosophical focus. The MIT Press, Cambridge

    Google Scholar 

  • Sober E (1986) Explanatory presupposition. Aust J Philos 64:143–149

    Article  Google Scholar 

  • Sober E (1988) Reconstructing the past: parsimony, evolution, and inference. The MIT Press, Cambridge

    Google Scholar 

  • Sober E (1994) From a biological point of view: essays in evolutionary biology. Cambridge University Press, New York

    Book  Google Scholar 

  • Strahler AN (1992) Understanding science: an introduction to concepts and issues. Prometheus Books, Buffalo

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Thagard P (1988) Computational philosophy of science. The MIT Press, Cambridge

    Google Scholar 

  • Thagard P (2004) Rationality and science. In: Mele A, Rawlings P (eds) Handbook of rationality. Oxford University Press, Oxford, pp 363–379

    Google Scholar 

  • Tucker A (2004) Our knowledge of the past: a philosophy of historiography. Cambridge University Press, New York

    Book  Google Scholar 

  • Tucker A (2011) Historical science, over- and underdetermined: a study of Darwin’s inference of origins. Br J Philos Sci 62:805–829

    Article  Google Scholar 

  • Turner D (2007) Making prehistory: historical science and the scientific realism debate. Cambridge University Press, New York

    Book  Google Scholar 

  • Van Fraassen BC (1990) The scientific image. Clarendon Press, New York

    Google Scholar 

  • Vrba E, Eldredge N (1984) Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146–171

    Google Scholar 

  • Walker SI (2014) Top-down causation and the rise of information in the emergence of life. Information 5:424–439

    Article  Google Scholar 

  • Walker SI, Cisneros L, Davies PCW (2012) Evolutionary transitions and top-down causation. Proc Artif Life 13:283–290

    Google Scholar 

  • Walton D (2004) Abductive reasoning. The University of Alabama Press, Tuscaloosa

    Google Scholar 

  • Wheeler WC (2012) Systematics: a course of lectures. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Whitlock MC (2014) From DNA to phenotypes. In: Losos JB, Baum DA, Futuyma DJ, Hoekstra HE, Lenski RE, Moore AJ, Peichel CL, Schluter D, Whitlock MC (eds) The Princeton guide to evolution. Princeton University Press, Princeton, pp 40–46

  • Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Zhang Z, Yu J (2006) Evaluation of six methods for estimating synonymous and nonsynonymous substitution rates. Genomics Proteomics Bioinform 4:173–181

    Article  Google Scholar 

  • Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk Fitzhugh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzhugh, K. Sequence Data, Phylogenetic Inference, and Implications of Downward Causation. Acta Biotheor 64, 133–160 (2016). https://doi.org/10.1007/s10441-016-9277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9277-0

Keywords

Navigation