Skip to main content
Log in

Efficient Numerical Schemes for a Two-Species Keller-Segel Model and Investigation of Its Blowup Phenomena in 3D

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider in this paper numerical approximation and simulation of a two-species Keller-Segel model. The model enjoys an energy dissipation law, mass conservation and bound or positivity preserving for the population density of two species. We construct a class of very efficient numerical schemes based on the generalized scalar auxiliary variable with relaxation which preserve unconditionally the essential properties of the model at the discrete level. We conduct a sequence of numerical tests to validate the properties of these schemes, and to study the blow-up phenomena of the model in a three-dimensional domain in parabolic-elliptic form and parabolic-parabolic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In the particular case with \(\tau =\alpha =0\), the equation (1.3) should be adjusted to \(-\beta \Delta c = \gamma _{1}\rho _{1}+ \gamma _{2}\rho _{2} - \gamma _{1} \langle \rho _{1} \rangle - \gamma _{2} \langle \rho _{2} \rangle \) with \(\langle \rho _{i} \rangle = \frac{1}{| \Omega |} \int _{\Omega} \rho _{i} d\boldsymbol{x}\) (\(i=1,2\)), due to the compatibility with the boundary conditions involved [23, 29].

References

  1. Arumugam, G., Tyagi, J.: Keller-Segel Chemotaxis models: a review. Acta Appl. Math. 171(1), 1–82 (2021)

    Article  MathSciNet  Google Scholar 

  2. Biler, P., Espejo, E.F., Guerra, I.: Blowup in higher dimensional two species chemotactic models. Commun. Pure Appl. Anal. 12(1), 89–98 (2013)

    Article  MathSciNet  Google Scholar 

  3. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1 (2006)

    MathSciNet  Google Scholar 

  4. Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535), 49–53 (1995)

    Article  Google Scholar 

  5. Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for Chemotaxis and haptotaxis models. Numer. Math. 111(2), 169–205 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chertock, A., Kurganov, A., Ricchiuto, M., Wu, T.: Adaptive moving mesh upwind scheme for the two-species Chemotaxis model. Comput. Math. Appl. 77(12), 3172–3185 (2019)

    Article  MathSciNet  Google Scholar 

  7. Conca, C., Espejo, E., Vilches, K.: Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in \(R^{2}\). Eur. J. Appl. Math. 22, 553–580 (2011)

    Article  Google Scholar 

  8. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some Chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

    Article  MathSciNet  Google Scholar 

  9. Dolak, Y., Schmeiser, C.: The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math. 66(1), 286–308 (2005)

    Article  MathSciNet  Google Scholar 

  10. Espejo, E.E., Stevens, A., Velázquez, J.J.L.: Simultaneous finite time blow-up in a two-species model for Chemotaxis. Analysis 29, 317–338 (2009)

    Article  MathSciNet  Google Scholar 

  11. Espejo, E.E., Stevens, A., Suzuki, T.: Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species. Differ. Integral Equ. 25, 251–288 (2012)

    MathSciNet  Google Scholar 

  12. Espejo, E.E., Vilches, K., Conca, C.: Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in \(R^{2}\). Eur. J. Appl. Math. 24, 297–313 (2013)

    Article  Google Scholar 

  13. He, S., Tadmor, E.: Multi-species Patlak-Keller-Segel system. Indiana Univ. Math. J. 70(4), 1578–1624 (2021)

    Article  MathSciNet  Google Scholar 

  14. Herrero, M.A., Velázquez, J.J.L.: Chemotactic collapse for the Keller-Segel model. J. Math. Biol. 35(2), 177–194 (1996)

    Article  MathSciNet  Google Scholar 

  15. Hillen, T., Painter, K.J.: Global existence for a parabolic Chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26(4), 280–301 (2001)

    Article  MathSciNet  Google Scholar 

  16. Hillen, T., Painter, K.J.: A user’s guide to PDE models for Chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  17. Horstmann, D.: From 1970 until present: the Keller-Segel model in Chemotaxis and its consequences I. Jahresber. Dtsch. Math.-Ver. 105(3), 103–165 (2003)

    MathSciNet  Google Scholar 

  18. Hu, J., Zhang, X.: Positivity-preserving and energy-dissipative finite difference schemes for the Fokker-Planck and Keller-Segel equations. IMA J. Numer. Anal. 43(3), 1450–1484 (2023)

    Article  MathSciNet  Google Scholar 

  19. Huang, F., Shen, J.: Bound/positivity preserving and energy stable SAV schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations. Siam J. Sci. Comput. 43(3) (2021)

  20. Huang, F., Shen, J.: A new class of implicit-explicit BDFk SAV schemes for general dissipative systems and their error analysis. Comput. Methods Appl. Mech. Eng. 392, 114718 (2022)

    Article  Google Scholar 

  21. Huang, X., Shen, J.: Bound/positivity preserving SAV schemes for the Patlak-Keller-Segel-Navier-Stokes system. J. Comput. Phys. 480, 112034 (2023)

    Article  MathSciNet  Google Scholar 

  22. Huang, X., Xiao, X., Zhao, J., Feng, X.: An efficient operator-splitting FEM-FCT algorithm for 3D Chemotaxis models. Eng. Comput. 36, 1393–1404 (2020)

    Article  Google Scholar 

  23. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling Chemotaxis. Trans. Am. Math. Soc. 329(2), 819–824 (1992)

    Article  MathSciNet  Google Scholar 

  24. Jin, S., Lu, H., Pareschi, L.: A high order stochastic asymptotic preserving scheme for Chemotaxis kinetic models with random inputs. Multiscale Model. Simul. 16, 1884–1915 (2018)

    Article  MathSciNet  Google Scholar 

  25. Keller, E.F., Segel, L.A.: Model for Chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)

    Article  Google Scholar 

  26. Kurganov, A., Lukacova-Medvidova, M.: Numerical study of two-species Chemotaxis models. Discrete Contin. Dyn. Syst., Ser. B 19(1), 131 (2014)

    MathSciNet  Google Scholar 

  27. Lankeit, J., Winkler, M.: Facing low regularity in Chemotaxis systems. Jahresber. Dtsch. Math.-Ver. 122(1), 35–64 (2020)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Li, Y.X.: Finite-time blow-up in higher dimensional parabolic-parabolic Chemotaxis system for two species. Nonlinear Anal., Theory Methods Appl. 109, 72–84 (2014)

    Article  Google Scholar 

  29. Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling Chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  Google Scholar 

  30. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15(3), 311–338 (1953)

    Article  MathSciNet  Google Scholar 

  31. Shen, J., Xu, J.: Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations. SIAM J. Numer. Anal. 58(3), 1674–1695 (2020)

    Article  MathSciNet  Google Scholar 

  32. Strehl, R., Sokolov, A., Kuzmin, D., Turek, S.: A fux-corrected fnite element method for Chemotaxis problems. Comput. Methods Appl. Math. 10(2), 219–232 (2010)

    Article  MathSciNet  Google Scholar 

  33. Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions. SIAM J. Appl. Math. 64(4), 1198–1223 (2004)

    Article  MathSciNet  Google Scholar 

  34. Velázquez, J.J.L.: Point dynamics in a singular limit of the Keller-Segel model 2: formation of the concentration regions. SIAM J. Appl. Math. 64(4), 1224–1248 (2004)

    Article  MathSciNet  Google Scholar 

  35. Wang, S., Zhou, S., Shi, S., Chen, W.: Fully decoupled and energy stable BDF schemes for a class of Keller-Segel equations. J. Comput. Phys. 449, 110799 (2022)

    Article  MathSciNet  Google Scholar 

  36. Wolansky, G.: Multi-components chemotactic system in the absence of conflicts. Eur. J. Appl. Math. 13(6), 641–661 (2002)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Y., Shen, J.: A generalized SAV approach with relaxation for dissipative systems. J. Comput. Phys. 464, 111311 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported in part by NSFC grant 12371409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Dedicated to Professor Shi Jin’s 60th Birthday

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Shen, J. Efficient Numerical Schemes for a Two-Species Keller-Segel Model and Investigation of Its Blowup Phenomena in 3D. Acta Appl Math 190, 10 (2024). https://doi.org/10.1007/s10440-024-00647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00647-0

Keywords

Mathematics Subject Classification

Navigation