Skip to main content
Log in

Global Solvability in a Two-Species Chemotaxis System with Signal Production

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the following prototypical two-species chemotaxis system with Lotka-Volterra competition and signal production:

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} u_{t}=\Delta u-\nabla \cdot (u\nabla w)+u(1-u^{\theta -1}-v), &x\in \Omega , t>0, \\ v_{t}=\Delta v-\nabla \cdot (v\nabla w)+v(1-v-u), & x\in \Omega , t>0, \\ w_{t}=\Delta w-w+ u+ v, & x\in \Omega , t>0. \end{array}\displaystyle \right .(\ast ) $$

We show that if \(\theta >1+\frac{N-2}{N}\), the associated Neumann initial-boundary value problem for (∗) admits a global generalized solutions in a bounded and smooth domain \(\Omega \subset \mathbb{R}^{N}\) \((N\geq 2)\) under merely integrable initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81, 860–876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  4. Hirata, M., Kurima, S., Mizukami, M., Yokota, T.: Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics. J. Differ. Equ. 263, 470–490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jin, H., Liu, Z., Shi, S., Xu, J.: Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity. J. Differ. Equ. 267(1), 494–524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, H., Xiang, T.: Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics. Discrete Contin. Dyn. Syst., Ser. B 24, 1919–1942 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. NoDEA Nonlinear Differ. Equ. Appl. 24, 49 (2017) 33 pp.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lankeit, E., Lankeit, J.: On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms. Nonlinearity 32, 1569–1596 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Wang, Y.: On a fully parabolic chemotaxis system with Lotka-Volterra competitive kinetics. J. Math. Anal. Appl. 471, 584–598 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, K., Mu, C.: Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete Contin. Dyn. Syst., Ser. B 22, 2233–2260 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Lin, K., Mu, C., Zhong, H.: A new approach toward stabilization in a two-species chemotaxis model with logistic source. Comput. Math. Appl. 75, 837–849 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mizukami, M.: Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete Contin. Dyn. Syst., Ser. B 22(6), 2301–2319 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  15. Ren, G.: Boundedness and stabilization in a two-species chemotaxis system with logistic source. Z. Angew. Math. Phys. 77, 177 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, G.: Global solvability in a two-species chemotaxis system with logistic source. J. Math. Phys. 62, 041504 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, G., Liu, B.: Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals. Nonlinear Anal., Real World Appl. 48, 288–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, G., Liu, B.: Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source. J. Differ. Equ. 269, 1484–1520 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, G., Liu, B.: Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics. Math. Models Methods Appl. Sci. 31, 941–978 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ren, G., Xiang, T.: Global solvability and asymptotical behavior in a two-species chemotaxis model with signal absorption. 2102.03713

  21. Qiu, S., Mu, C., Tu, X.: Global dynamics of a two-species chemotaxis-consumption system with signal-dependent motilities. Nonlinear Anal., Real World Appl. 57, 103190 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stinner, C., Tello, J., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tello, J., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  25. Tu, X., Mu, C., Qiu, S., Yang, L.: Boundedness in the higher-dimensional fully parabolic chemotaxis-competition system with loop. Z. Angew. Math. Phys. 71, 185 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal., Real World Appl. 34, 520–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, L.: Improvement of conditions for boundedness in a two-species chemotaxis competition system of parabolic-parabolic-elliptic type. J. Math. Anal. Appl. 484, 123705 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, L., Mu, C., Hu, X., Zheng, P.: Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant. J. Differ. Equ. 264, 3369–3401 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, L., Zhang, J., Mu, C., Hu, X.: Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. Syst., Ser. B 25, 191–221 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Xu, J.: On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. J. Math. Biol. 82, 7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47(4), 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation. J. Differ. Equ. 263, 4826–4869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69, 69 (2018) 40 pp.

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions. Math. Models Methods Appl. Sci. 29(3), 373–418 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in \(L^{1}\). Adv. Nonlinear Anal. 9, 526–566 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: \(L^{1}\) solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation. Preprint

  40. Winkler, M.: Attractiveness of constant states in logistic-type Keller-Segel systems involving subquadratic growth restrictions. Adv. Nonlinear Stud. 20, 795–817 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiang, T.: Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model. SIAM J. Appl. Math. 78, 2420–2438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Q., Li, Y.: Global boundedness of solutions to a two-species chemotaxis system. Z. Angew. Math. Phys. 66, 83–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Q., Li, Y.: Global solutions in a high-dimensional two-species chemotaxis model with Lotka-Volterra competitive kinetics. J. Math. Anal. Appl. 467, 751–767 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Q., Tao, W.: Boundedness and stabilization in a two-species chemotaxis system with signal absorption. Comput. Math. Appl. 78, 2672–2681 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. Michael Winkler for sharing his preprint [39], we also thank the two anonymous referees for carefully reading our manuscript and giving positive, valuable comments and suggestions, which further helped us to improve the exposition of this work. G. Ren was supported by the National Natural Science Foundation of China (No.12001214). T. Xiang was funded by the National Natural Science Foundation of China (Nos. 12071476 and 11871226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Xiang, T. Global Solvability in a Two-Species Chemotaxis System with Signal Production. Acta Appl Math 178, 12 (2022). https://doi.org/10.1007/s10440-022-00485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-022-00485-y

Keywords

Mathematics Subject Classification (2000)

Navigation