Skip to main content
Log in

Fokas Diagonalization of Piecewise Constant Coefficient Linear Differential Operators on Finite Intervals and Networks

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We describe a new form of diagonalization for linear two point constant coefficient differential operators with arbitrary linear boundary conditions. Although the diagonalization is in a weaker sense than that usually employed to solve initial boundary value problems (IBVP), we show that it is sufficient to solve IBVP whose spatial parts are described by such operators. We argue that the method described may be viewed as a reimplementation of the Fokas transform method for linear evolution equations on the finite interval. The results are extended to multipoint and interface operators, including operators defined on networks of finite intervals, in which the coefficients of the differential operator may vary between subintervals, and arbitrary interface and boundary conditions may be imposed; differential operators with piecewise constant coefficients are thus included. Both homogeneous and inhomogeneous problems are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biondini, G., Trogdon, T.: Evolution partial differential equations with discontinuous data. Q. Appl. Math. 77, 689–726 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Biondini, G., Trogdon, T.: Gibbs phenomenon for dispersive PDEs on the line. SIAM J. Appl. Math. 77, 813–837 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G.D.: Boundary value and expansion problems of ordinary linear differential equations. Trans. Am. Math. Soc. 9, 373–395 (1908)

    MathSciNet  MATH  Google Scholar 

  4. Cannon, J.R.: The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 21, 155–160 (1963)

    MathSciNet  MATH  Google Scholar 

  5. Chilton, D.: An alternative approach to two-point boundary value problems for linear evolution PDEs and applications. Phd, University of Reading (2006)

  6. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  7. Davies, E.B.: Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  8. Deckert, K.L., Maple, C.G.: Solutions for diffusion equations with integral type boundary conditions. Proc. Iowa Acad. Sci. 70, 354–361 (1963)

    MathSciNet  MATH  Google Scholar 

  9. Deconinck, B., Sheils, N.: Heat conduction on the ring: interface problems with periodic boundary conditions. Appl. Math. Lett. 37, 107–111 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Deconinck, B., Sheils, N.: The time-dependent Schrödinger equation with piecewise constant potentials. Eur. J. Appl. Math. 31, 57–83 (2020)

    Google Scholar 

  11. Deconinck, B., Trogdon, T.: The solution of linear constant-coefficient evolution PDEs with periodic boundary conditions. Appl. Anal. 91, 529–544 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Deconinck, B., Vasan, V.: Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete Contin. Dyn. Syst., Ser. A 33(7), 3171–3188 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Deconinck, B., Pelloni, B., Sheils, N.E.: Non-steady-state heat conduction in composite walls. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 470(2165), 20130605 (2014)

    Google Scholar 

  14. Deconinck, B., Trogdon, T., Vasan, V.: The method of Fokas for solving linear partial differential equations. SIAM Rev. 56(1), 159–186 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Deconinck, B., Sheils, N.E., Smith, D.A.: The linear KdV equation with an interface. Commun. Math. Phys. 347, 489–509 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Deconinck, B., Guo, Q., Shlizerman, E., Vasan, V.: Fokas’s unified transform method for linear systems. Q. Appl. Math. 76(3), 463–488 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Dunford, N., Schwartz, J.T.: Linear Operators, Part II: Spectral Theory, Self Adjoint Operators in a Hilbert Space. Pure and Applied Mathematics. Wiley-Interscience, New York (1963)

    MATH  Google Scholar 

  18. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 453, 1411–1443 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Fokas, A.S.: On the integrability of linear and nonlinear partial differential equations. J. Math. Phys. 41, 4188–4237 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Fokas, A.S.: A new transform method for evolution PDEs. IMA J. Appl. Math. 67, 559–590 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Fokas, A.S.: A Unified Approach to Boundary Value Problems. CBMS-SIAM, Philadelphia, PA (2008)

    MATH  Google Scholar 

  22. Fokas, A.S., Gel’fand, I.M.: Integrability of linear and nonlinear evolution equations and the associated nonlinear Fourier transforms. Lett. Math. Phys. 32, 189–210 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Fokas, A.S., Pelloni, B.: Two-point boundary value problems for linear evolution equations. Math. Proc. Camb. Philos. Soc. 131, 521–543 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Fokas, A.S., Pelloni, B.: Boundary value problems for Boussinesq type systems. Math. Phys. Anal. Geom. 8(1), 59–96 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Fokas, A.S., Pelloni, B.: A transform method for linear evolution PDEs on a finite interval. IMA J. Appl. Math. 70, 564–587 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Fokas, A.S., Smith, D.A.: Evolution PDEs and augmented eigenfunctions. Finite interval. Adv. Differ. Equ. 21(7/8), 735–766 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Fokas, A.S., Spence, E.A.: Synthesis, as opposed to separation, of variables. SIAM Rev. 54(2), 291–324 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Fourier, J.B.J.: Théorie analytique de la chaleur. Didot, Paris (1822)

    MATH  Google Scholar 

  29. Freiling, G.: Irregular boundary value problems. Results Math. 62, 265–294 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Gel’fand, I.M., Shilov, G.E.: Generalized Functions Volume 3: Theory of Differential Equations. Academic Press, San Diego (1967). Trans. M.E. Mayer from Russian (1958)

    MATH  Google Scholar 

  31. Gel’fand, I.M., Vilenkin, N.Ya.: Generalized Functions Volume 4: Applications of Harmonic Analysis. Academic Press, San Diego (1964). Trans. A. Feinstein from Russian (1961)

    MATH  Google Scholar 

  32. Govindarajan, R., Prasath, S.G., Vasan, V.: Accurate solution method for the Maxey-Riley equation, and the effects of Basset history. J. Fluid Mech. 868, 428–460 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Hopkins, J.W.: Some convergent developments associated with irregular boundary conditions. Trans. Am. Math. Soc. 20, 245–259 (1919)

    MathSciNet  MATH  Google Scholar 

  34. Jackson, D.: Expansion problems with irregular boundary conditions. Proc. Am. Acad. Arts Sci. 51(7), 383–417 (1915)

    MATH  Google Scholar 

  35. Kesici, E., Pelloni, B., Pryer, T., Smith, D.A.: A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. Eur. J. Appl. Math. 29(3), 543–567 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Langer, R.E.: The zeros of exponential sums and integrals. Bull. Am. Math. Soc. 37, 213–239 (1931)

    MathSciNet  MATH  Google Scholar 

  37. Liouville, J., Sturm, C.: Extrait d’un mémoire sur le développement des fonctions en séries dont les différents termes sont assujettisa satisfairea une même équation différentielle linéaire, contenant un parametre variable. J. Math. Pures Appl. 2, 220–233 (1837)

    Google Scholar 

  38. Locker, J.: Self-adjointness for multi-point differential operators. Pac. J. Math. 45(2), 561–570 (1973)

    MathSciNet  MATH  Google Scholar 

  39. Locker, J.: Spectral Theory of Non-self-Adjoint Two-Point Differential Operators. Mathematical Surveys and Monographs, vol. 73. Am. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  40. Locker, J.: Eigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential Operators. Memoirs of the American Mathematical Society, vol. 195, no. 911. Am. Math. Soc., Providence (2008)

    MATH  Google Scholar 

  41. Miller, P.D., Smith, D.A.: The diffusion equation with nonlocal data. J. Math. Anal. Appl. 466(2), 1119–1143 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Neuberger, J.W.: The lack of self-adjointness in three-point boundary value problems. Pac. J. Math. 18(1), 165–168 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Papanicolaou, G.: An example where separation of variable fails. J. Math. Anal. Appl. 373(2), 739–744 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Pelloni, B.: Well-posed boundary value problems for integrable evolution equations on a finite interval. Theor. Math. Phys. 133(2), 1598–1606 (2002)

    MathSciNet  Google Scholar 

  45. Pelloni, B.: Well-posed boundary value problems for linear evolution equations on a finite interval. Math. Proc. Camb. Philos. Soc. 136, 361–382 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Pelloni, B.: The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 461, 2965–2984 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Pelloni, B., Smith, D.A.: Spectral theory of some non-selfadjoint linear differential operators. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 469(2154), 20130019 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Pelloni, B., Smith, D.A.: Evolution PDEs and augmented eigenfunctions. Half line. J. Spectr. Theory 6, 185–213 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Pelloni, B., Smith, D.A.: Nonlocal and multipoint boundary value problems for linear evolution equations. Stud. Appl. Math. 141(1), 46–88 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Pinsky, M.A.: Partial Differential Equations and Boundary-Value Problems. Pure and Applied Undergraduate Texts. Am. Math. Soc., Providence (2011)

    MATH  Google Scholar 

  51. Reed, M., Simon, B.: Methods of Modern Mathematical Physics Volume 2: Fourier Analysis, Self-Adjointness. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  52. Sheils, N.: Multilayer diffusion in a composite medium with imperfect contact. Appl. Math. Model. 46, 450–464 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Sheils, N.E., Smith, D.A.: Heat equation on a network using the Fokas method. J. Phys. A, Math. Theor. 48(33), 335001 (2015). 21 pp.

    MathSciNet  MATH  Google Scholar 

  54. Smith, D.A.: Spectral theory of ordinary and partial linear differential operators on finite intervals. Phd, University of Reading (2011)

  55. Smith, D.A.: Well-posed two-point initial-boundary value problems with arbitrary boundary conditions. Math. Proc. Camb. Philos. Soc. 152, 473–496 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Smith, D.A.: Well-posedness and conditioning of 3rd and higher order two-point initial-boundary value problems (2012). 1212.5466 [math.AP]

  57. Smith, D.A.: The Unified Transform Method for Linear Initial-Boundary Value Problems: A Spectral Interpretation. Unified Transform Method for Boundary Value Problems: Applications and Advances. SIAM, Philadelphia (2015)

    Google Scholar 

  58. Smith, D.A., Toh, W.-Y.: Linear evolution equations on the half line with dynamic boundary conditions. Eur. J. Appl. Math. (2021). https://doi.org/10.1017/S0956792521000103. 1910.08764 [math.AP]

    Article  Google Scholar 

  59. Smith, D.A., Trogdon, T., Vasan, V.: Linear dispersive shocks (2019, submitted). 1908.08716 [math.AP]

  60. Xiao, L.: Algorithmic solution of high order partial differential equations in Julia via the Fokas transform method. Yale-NUS College Capstone Project (2019). https://gitlab.com/linfanxiaolinda/capstone

  61. Zettl, A.: The lack of self-adjointness in three point boundary value problems. Proc. Am. Math. Soc. 17(2), 368–371 (1966)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Aitzhan gratefully acknowledges support from Yale-NUS College summer research programme 2019. Bhandari gratefully acknowledges support from Yale-NUS College summer research programme 2020. Smith gratefully acknowledges support from Yale-NUS College project grant IG18-PRB102. Smith delivered one section of this paper as part of a summer school in July 2018 at International Centre for Theoretical Sciences (ICTS) Bengaluru in the program Integrable systems in mathematics, condensed matter and statistical physics code ICTS/integrability2018/07, and at the Isaac Newton Institute (INI) program Complex analysis: techniques, applications and computations supported by EPSRC Grant Number EP/R014604/1. Smith would like to thank ICTS and INI for their hospitality and the participants in both programs for valuable conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Adjoints of Multipoint and Interface Differential Operators

Appendix: Adjoints of Multipoint and Interface Differential Operators

The definition of the Fokas transform in §7 relies on the classical (or Lagrange) adjoint of the interface differential operator. In this appendix, we undertake the construction of that adjoint, and its generalization to interface operators in which the component operators \(L_{r}\) are permitted to be of different orders from one another, and are permitted to have variable coefficients. The construction follows closely that laid out by Coddington and Levinson [6, Chap. 11], and generalizes those results to and beyond what is presented in [38]. We use notation aligned with the main sections of this paper, but all necessary definitions and arguments are contained within this appendix, so that it may be read independently.

1.1 A.1 Formulation of the Problem

Let \(m\in \mathbb{N}\) and, for each \(r\in \{1,\ldots ,m\}\), suppose \(n_{r}\in \mathbb{N}\) and define

$$ n_{\mathrm{all}}= \sum _{r=1}^{m} n_{r}. $$

For suitable coefficient functions \(c_{r\;j}\), consider the formal differential operators

$$ \mathscr {L}_{r} := \left ( \frac{\,\mathrm{d}}{\,\mathrm{d}x} \right )^{n_{r}} + \sum _{j=0}^{n_{r}-2} c_{r\;j}(x) \left ( \frac{\,\mathrm{d}}{\,\mathrm{d}x} \right )^{j}, \qquad r \in \{1, \ldots ,m\}, $$

in which we have assumed \(c_{r\;n_{r}}=1\) and \(c_{r\;n_{r}-1}=0\), and the vector formal differential operator

$$ \mathscr {L} := (\mathscr {L}_{1},\mathscr {L}_{2},\ldots ,\mathscr {L}_{m}) \circ , $$

where ∘ represents entrywise action of operators.

We define \(\Phi = \prod ^{m}_{r=1} \operatorname{AC}^{n_{r}-1}[0, 1]\), a product of function spaces \(\operatorname{AC}^{n_{r}-1}[0, 1]\). The inner product on this space is defined as the sum of the ordinary unweighted sesquilinear \(\mathrm{L}^{2}\) inner products on the constituent spaces,

$$ \langle \phi ,\psi \rangle := \sum ^{m}_{r=1} \int _{0}^{1} \phi _{r}(x) \overline{\psi _{r}(x)} \,\mathrm{d}x. $$

Let \(N\in \mathbb{Z}\) such that \(0 \leqslant N\leqslant 2n_{\mathrm{all}}\) denote the number of boundary conditions. Suppose that matrices of complex boundary coefficients \(b^{r},\beta ^{r}\in \mathbb{C}^{N\times n_{r}}\), \(r\in \{1, \ldots , m\}\) are chosen such that the concatenated matrix \((b^{1}:\beta ^{1}:\ldots :b^{m}:\beta ^{m})\in \mathbb{C}^{N\times 2n_{ \mathrm{all}}}\) has full rank. Define boundary forms \(B_{k}:\Phi \to \mathbb{C}\) by

$$ B_{k}(\phi ) = \sum _{r=1}^{m} \sum _{j=1}^{n_{r}} \left ( b_{k\;j}^{r} \phi _{r}^{(j-1)}(0) + \beta _{k\;j}^{r}\phi _{r}^{(j-1)}(1) \right ), \qquad k\in \left \{ 1,2,\ldots ,N\right \} , $$
(A.1)

and let \(\mathbf{B} = (B_{1}, B_{2}, \ldots , B_{N})\) be the vector of boundary forms. Provided that, for each \(r\in \{1,\ldots ,m\}\) and \(j\in \{0,1,\ldots ,n_{r}-2\}\), \(c_{r\;j}\in \operatorname{AC}^{n_{r}-j-1}[0,1]\), on the space

$$ \Phi _{\mathbf{B}}=\{\phi \in \Phi : \mathbf{B}\phi =\mathbf{0}\}, $$

we define the differential operator \(L:\Phi _{\mathbf{B}}\to \prod _{r=1}^{m} \mathrm{L}^{1}[0,1]\) by \(L\phi =\mathscr {L}\phi \).

1.1.1 A.1.1 Adjoint Problem

For the operator \(L\) defined above, we aim to construct the classical adjoint \(L^{\star }:\Phi _{\mathbf{B}^{\star }} \to \prod _{r=1}^{m} \mathrm{L}^{1}[0,1]\). That is, we aim to find a formal differential operator \(\mathscr {L}^{\star }\) and adjoint vector boundary form \(\mathbf{B}^{\star }\) such that, for all \(\phi \in \Phi _{\mathbf{B}}\) and all \(\psi \in \Phi _{\mathbf{B}^{\star }}\),

$$ \langle \mathscr {L}\phi , \psi \rangle = \langle \phi , \mathscr {L}^{\star }\psi \rangle . $$

By [6, theorem 3.6.3] applied entrywise, the formal adjoint is the operator \(\mathscr {L}^{\star }= (\mathscr {L}_{1}^{\star },\mathscr {L}_{2}^{\star }, \ldots ,\mathscr {L}_{m}^{\star }) \circ \), in which

$$\begin{aligned} \mathscr {L}_{r}^{\star }\psi _{r} := (-1)^{n_{r}} \frac{\,\mathrm{d}^{n_{r}}\psi _{r}}{\,\mathrm{d}x^{n_{r}}} + \sum ^{n_{r}-2}_{j=0} (-1)^{j} \frac{\,\mathrm{d}^{j}}{\,\mathrm{d}x^{j}}\left ( \overline{c_{r\;j}(x)} \psi _{r} \right ). \end{aligned}$$
(A.2)

It remains to determine an appropriate adjoint vector boundary form \(\mathbf{B}^{\star }\).

Remark 34

The only application of the results of this appendix in the present work is for the case \(n_{1}=n_{2}=\cdots =n_{m}=:n\), all \(c_{r\;j}\) constant, and \(N=n_{\mathrm{all}}=mn\), and therefore the reader may restrict themself to this case in what follows, if they desire.

1.2 A.2 Green’s Formula

Following [6, theorem 3.6.3], for \(\phi ,\psi \in \Phi \), we define \([\phi \psi ]_{r}\) to be the form in

$$ (\phi _{r},\phi '_{r},\ldots ,\phi ^{n_{r}-1}_{r}) \qquad \mbox{and} \qquad (\psi _{r},\psi '_{r},\ldots ,\psi ^{n_{r}-1}_{r}) $$

given by

$$ [\phi \psi ]_{r} = \sum _{\ell =1}^{n_{r}}\sum _{ \substack{j+k=\ell -1\\j,k\geqslant 0}} (-1)^{j} \phi _{r}^{(k)} \left ( c_{r\;n_{r}-\ell }\overline{\psi _{r}} \right )^{(j)}. $$

Application of Green’s formula [6, corollary to theorem 3.6.3] yields

$$\begin{aligned} \langle \mathscr {L}\phi , \psi \rangle - \langle \phi , \mathscr {L}^{\star }\psi \rangle &= \sum _{r=1}^{m} \left ( [\phi \psi ]_{r} (1) - [ \phi \psi ]_{r} (0) \right ) \\ &= \sum _{r=1}^{m}\sum _{j,k=1}^{n_{r}} \left (F_{j\;k}^{r}(1) \phi _{r}^{(k-1)}(1) \psi _{r}^{(j-1)}(1) - F_{j\;k}^{r}(0) \phi _{r}^{(k-1)}(0) \psi _{r}^{(j-1)}(0) \right ), \end{aligned}$$

where \(F^{r}(x)\) denotes an \(n_{r} \times n_{r}\) matrix at the point \(x \in [0,1]\). Following [6, §11.1], the entries of \(F^{r}(x)\), for \(j,k \in \{1, \ldots , n_{r}\}\), are given by

$$ F_{j\, k}^{r}(x) = \textstyle\begin{cases} \sum ^{n_{r}-k}_{\ell = j-1} (-1)^{\ell }\binom{\ell }{j-1} \left ( \frac{\,\mathrm{d}}{\,\mathrm{d}x}\right )^{\ell - j +1} c_{r\; \ell + k}(x) & j + k< n_{r}+ 1, \\ (-1)^{j-1} c_{r\;n_{r}}(x) = (-1)^{j-1} & j+k = n_{r} + 1, \\ 0 & j+k > n_{r} + 1. \end{cases} $$
(A.3)

Observe that since \(\mathrm{det}\left (F^{r}(x)\right ) = 1\), the matrix \(F^{r}\) is non-singular for all \(r \in \{1, \ldots , m\}\).

Our goal is to rewrite the right side of Green’s formula as a sesquilinear form \(\mathscr {S}\). First, let

$$ \vec{\phi _{r}} := \left (\phi _{r}, \phi '_{r}, \ldots , \phi _{r}^{(n_{r} - 1)} \right )^{\top }, $$

and observe that

$$\begin{aligned}{} [\phi \psi ]_{r}(x) = \sum _{k,j=1}^{n_{r}}F_{j\;k}^{r} (x) \phi _{r}^{(k-1)} (x) \psi _{r}^{(j-1)} (x) &= \sum _{j=1}^{n}\left [ \left (\sum _{k=1}^{n} F_{j\;k}^{r} \phi _{r}^{(k-1)}\right ) \psi _{r}^{(j-1)}\right ](x) \\ &= F^{r} (x) \vec{\phi _{r}}(x) \odot \vec{\psi _{r}}(x), \end{aligned}$$

where ⊙ refers to the sesquilinear dot product on \(\mathbb{C}^{n_{r}}\). Green’s formula can then be rewritten as

$$\begin{aligned} \langle \mathscr {L}\phi , \psi \rangle - \langle \phi , \mathscr {L}^{\star }\psi \rangle &= \sum _{r=1}^{m} [\phi \psi ]_{r}(1) - [\phi \psi ]_{r}(0) \\ &= \sum _{r=1}^{m} F^{r} (1) \vec{\phi _{r}} (1) \odot \vec{\psi _{r}} (1) - F^{r} (0) \vec{\phi _{r}} (0) \odot \vec{\psi _{r}} (0) \\ &= \sum _{r=1}^{m} \begin{bmatrix} - F^{r}(0) & 0_{n_{r} \times n_{r}} \\ 0_{n_{r} \times n_{r}} & F^{r}(1) \\ \end{bmatrix} \begin{bmatrix} \vec{\phi _{r}}(0) \\ \vec{\phi _{r}}(1) \\ \end{bmatrix} \odot \begin{bmatrix} \vec{\psi _{r}}(0) \\ \vec{\psi _{r}}(1) \\ \end{bmatrix}. \end{aligned}$$
(A.4)

Expansion of the sum yields

$$\begin{aligned} &\langle \mathscr {L}\phi , \psi \rangle - \langle \phi , \mathscr {L}^{\star }\psi \rangle \\ &\hspace{5em}= \begin{bmatrix} - F^{1}(0) & 0_{n_{1}\times n_{1}} \\ 0_{n_{1}\times n_{1}} & F^{1}(1) \\ \end{bmatrix} \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \end{bmatrix} \odot \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \end{bmatrix} \\ &\hspace{14em} + \cdots + \begin{bmatrix} - F^{m}(0) & 0_{n_{m}\times n_{m}} \\ 0_{n_{m}\times n_{m}} & F^{m}(1) \\ \end{bmatrix} \begin{bmatrix} \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \\ \end{bmatrix} \odot \begin{bmatrix} \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \\ \end{bmatrix} \\ &\hspace{5em}= \underbrace{ \begin{bmatrix} - F^{1}(0) & 0 & \cdots & 0 & 0 \\ 0 & F^{1}(1) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -F^{m}(0) & 0 \\ 0 & 0 & \cdots & 0 & F^{m}(1) \end{bmatrix}}_{\text{$2n_{\mathrm{all}}\times 2n_{\mathrm{all}}$}} \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vec{\phi _{2}}(0) \\ \vec{\phi _{2}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix} \odot \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vec{\psi _{2}}(0) \\ \vec{\psi _{2}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} \\ &\hspace{5em}=: S \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix} \odot \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} =: \mathscr {S} \left ( \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix}, \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} \right ), \end{aligned}$$
(A.5)

where the matrix \(S\) is associated with the sesquilinear form \(\mathscr {S}\), and \(S\) is a block diagonal matrix whose diagonal blocks are \(n_{r} \times n_{r}\). This may be compared with [6, equation (11.1.3)].

1.3 A.3 Interface Boundary Form Formula

We turn to characterising adjoint interface boundary conditions, by extending the boundary form formula for two point problems, as given in [6, theorem 11.2.1].

Equation (A.1) can be expressed as

$$ \mathbf{B}\phi = \sum ^{m}_{r=1} \sum ^{n_{r}-1}_{j=0} \begin{bmatrix} b_{1\;j}^{r} \\ \vdots \\ b_{N\;j}^{r}\end{bmatrix} \phi _{r}^{(j)}(0) + \begin{bmatrix} \beta _{1\;j}^{r} \\ \vdots \\ \beta _{N\;j}^{r}\end{bmatrix} \phi _{r}^{(j)}(1) = \sum ^{m}_{r=1} b^{r} \vec{\phi _{r}}(0) + \beta ^{r} \vec{\phi _{r}}(1). $$
(A.6)

Using \((b^{r}:\beta ^{r})\) to represent concatenation of matrices, we can write

$$ \mathbf{B}\phi = \sum ^{m}_{r=1} \begin{bmatrix} b^{r} : \beta ^{r} \end{bmatrix} \begin{bmatrix} \vec{\phi _{r}}(0) \\ \vec{\phi _{r}}(1) \end{bmatrix} = \underbrace{\begin{bmatrix} b^{1} : \beta ^{1} :{} \ldots {}: b^{m} : \beta ^{m} \end{bmatrix}}_{\text{$N\times 2n_{\mathrm{all}}$}} \underbrace{\begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix}}_{\text{$2n_{\mathrm{all}}\times 1$}}. $$
(A.7)

Thus we have two compact ways to write vectors of boundary forms, namely equations (A.6) and (A.7). Next, we extend the notion of complementary vectors of boundary forms from that in [6, §11.2] to the present setting.

Definition 35

Let \(N\in \mathbb{Z}\), with \(0 \leqslant N\leqslant 2n_{\mathrm{all}}\). If \(\mathbf{B} = (B_{1}, \ldots , B_{N})\) is any vector of boundary forms with \(\mathrm{rank}(\mathbf{B}) = N\), and \(\mathbf{B}_{\mathrm{c}}= (B_{N+1}, \ldots , B_{2n_{\mathrm{all}}})\) is a vector of forms with \(\mathrm{rank}(\mathbf{B}_{\mathrm{c}}) = 2n_{\mathrm{all}}-N\) such that the rank of \((B_{1}, \ldots , B_{2n_{\mathrm{all}}})\) is \(2n_{\mathrm{all}}\), then \(\mathbf{B}\) and \(\mathbf{B}_{\mathrm{c}}\) are said to be complementary vectors of boundary forms.

Note that extending \((B_{1}, \ldots , B_{N})\) to \((B_{1}, \ldots , B_{2n_{\mathrm{all}}})\) is equivalent to embedding the matrices \(b^{r}, \beta ^{r}\) in a \(2n_{\mathrm{all}}\times 2n_{\mathrm{all}}\) non-singular matrix. That is

$$\begin{aligned} \begin{bmatrix} \mathbf{B}\phi \\ \mathbf{B}_{\mathrm{c}}\phi \end{bmatrix} &= \sum ^{m}_{r=1} \begin{bmatrix} b^{r} & \beta ^{r} \\ b^{r}_{\mathrm{c}}& \beta ^{r}_{\mathrm{c}} \end{bmatrix} \begin{bmatrix} \vec{\phi _{r}}(0) \\ \vec{\phi _{r}}(1) \end{bmatrix} \\ &= \underbrace{ \begin{bmatrix} b^{1} & \beta ^{1} & b^{2} & \beta ^{2} & \cdots & b^{m} & \beta ^{m} \\ b^{1}_{\mathrm{c}}& \beta ^{1}_{\mathrm{c}}& b^{2}_{\mathrm{c}}& \beta ^{2}_{\mathrm{c}}& \cdots & b^{m}_{\mathrm{c}}& \beta ^{m}_{\mathrm{c}}\end{bmatrix} }_{\text{$2n_{\mathrm{all}}\times 2n_{\mathrm{all}}$}} \underbrace{\begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vec{\phi _{2}}(0) \\ \vec{\phi _{2}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix}}_{\text{$2n_{\mathrm{all}}\times 1$}} =: H \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vec{\phi _{2}}(0) \\ \vec{\phi _{2}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix}, \end{aligned}$$
(A.8)

where \(\mathrm{rank}(H) = 2n_{\mathrm{all}}\) and \(b^{r}_{\mathrm{c}}, \beta ^{r}_{\mathrm{c}}\in \mathbb{C}^{(2n_{ \mathrm{all}}-N)\times n_{r}}\). We will use equation (A.8) to express Green’s formula as a combination of vector boundary forms \(\mathbf{B}\) and \(\mathbf{B}_{\mathrm{c}}\) in Theorem 37. Its proof also requires the following lemma, whose proof is immediate from the fact that, in the sesquilinear dot product, the conjugate transpose of a matrix is the adjoint of the matrix.

Lemma 36

Let \(\sigma \) be the sesquilinear form associated with a nonsingular matrix \(\Sigma \);

$$ \sigma (f,g) = \Sigma f \odot g. $$

For each nonsingular matrix \(F\), there exists a unique nonsingular matrix \(G\) such that \(\sigma (f,g) = Ff \odot Gg\) for all \(f,g\). Moreover, \(G=(\Sigma F^{-1})^{\dagger }\), in which represents the (Hermitian) conjugate transpose.

Theorem 37

Interface boundary form formula

Given any vector of forms \(\mathbf{B}\) of rank \(N\), and any complementary vector of forms \(\mathbf{B}_{\mathrm{c}}\), there exist unique vectors of forms \(\mathbf{B}^{\star }_{\mathrm{c}}\) and \(\mathbf{B}^{\star }\) of rank \(N\) and \(2n_{\mathrm{all}}-N\), respectively, such that

$$ \sum _{r=1}^{m} [\phi \psi ]_{r}(1) - [\phi \psi ]_{r}(0) = \mathbf{B}\phi \odot \mathbf{B}^{\star }_{\mathrm{c}}\psi + \mathbf{B}_{\mathrm{c}}\phi \odot \mathbf{B}^{\star }\psi . $$
(A.9)

Moreover, the complementary adjoint boundary coefficient matrices \(b_{\mathrm{c}\;}^{r\;\star },\beta _{\mathrm{c}\;}^{r\;\star }\in \mathbb{C}^{N\times n_{r}}\) and the adjoint boundary coefficient matrices \(b_{\;}^{r\;\star },\beta _{\;}^{r\;\star }\in \mathbb{C}^{(2n_{ \mathrm{all}}-N)\times n_{r}}\) are given by

$$ \begin{bmatrix} b_{\mathrm{c}\;}^{1\;\star } & \beta _{\mathrm{c}\;}^{1\;\star } & b_{ \mathrm{c}\;}^{2\;\star } & \beta _{\mathrm{c}\;}^{2\;\star } & \cdots & b_{\mathrm{c}\;}^{m\;\star } & \beta _{\mathrm{c}\;}^{m\; \star } \\ b_{\;}^{1\;\star } & \beta _{\;}^{1\;\star } & b_{\;}^{2\;\star } & \beta _{\;}^{2\;\star } & \cdots & b_{\;}^{m\;\star } & \beta _{\;}^{m \;\star } \end{bmatrix} = \left (SH^{-1}\right )^{\dagger }, $$
(A.10)

for \(H\) as defined in equation (A.8) and \(S\) as defined in equation (A.5).

Proof

Let \(H\) be as defined by equation (A.8). By Lemma 36, there exists a unique \(2n_{\mathrm{all}}\times 2n_{\mathrm{all}}\) nonsingular matrix \(J\) such that

$$ \mathscr {S} \left ( \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix} , \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} \right ) = H \begin{bmatrix} \vec{\phi _{1}}(0) \\ \vec{\phi _{1}}(1) \\ \vdots \\ \vec{\phi _{m}}(0) \\ \vec{\phi _{m}}(1) \end{bmatrix} \odot J \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} . $$
(A.11)

Moreover, \(J=\left (SH^{-1}\right )^{\dagger }\). We define \(\mathbf{B}^{\star }, \mathbf{B}^{\star }_{\mathrm{c}}\) by

$$ \begin{bmatrix} \mathbf{B}^{\star }_{\mathrm{c}}\psi \\ \mathbf{B}^{\star } \psi \end{bmatrix} = J \begin{bmatrix} \vec{\psi _{1}}(0) \\ \vec{\psi _{1}}(1) \\ \vdots \\ \vec{\psi _{m}}(0) \\ \vec{\psi _{m}}(1) \end{bmatrix} , $$
(A.12)

from which equation (A.10) follows by the same argument as that used to derive equation (A.8). Equations (A.5), (A.11), (A.8), and (A.12) yield

$$ \sum _{r=1}^{m} [\phi \psi ]_{r}(1) - [\phi \psi ]_{r}(0) = \begin{bmatrix} \mathbf{B}\phi \\ \mathbf{B}_{\mathrm{c}}\phi \end{bmatrix} \odot \begin{bmatrix} \mathbf{B}^{\star }_{\mathrm{c}}\psi \\ \mathbf{B}^{\star } \psi \end{bmatrix} = \mathbf{B}\phi \odot \mathbf{B}^{\star }_{\mathrm{c}}\psi + \mathbf{B}_{\mathrm{c}}\phi \odot \mathbf{B}^{\star }\psi . $$

By unicity of \(J\), no other definition of \(\mathbf{B}^{\star }_{\mathrm{c}}\) and \(\mathbf{B}^{\star }\) satisfies equation (A.9). □

The interface boundary form formula theorem 37 allows us to define adjoint boundary conditions, whence we get the adjoint boundary value problem.

Definition 38

Suppose \(\mathbf{B} = (B_{1}, \ldots , B_{N})\) is a vector of forms with \(\mathrm{rank}(\mathbf{B}) = N\). Suppose \(\mathbf{B}^{\star }\) is any vector of forms with \(\mathrm{rank}(\mathbf{B}^{\star }) = 2n_{\mathrm{all}}-N\), determined as in Theorem 37. Then \(\mathbf{B}^{\star }\) is an adjoint boundary form and the equation \(\mathbf{B}^{\star }\psi = \mathbf{0}\) is an adjoint boundary condition to boundary condition \(\mathbf{B}\phi = \mathbf{0}\) in function space \(\Phi \).

Definition 39

Suppose \(\mathbf{B} = (B_{1}, \ldots , B_{N})\) is a vector of forms with \(\mathrm{rank}(\mathbf{B}) = N\) and \(\mathbf{B}^{\star }\) is an adjoint boundary form. Then the problem of solving

$$ L\phi = 0, \qquad \phi \in \Phi _{\mathbf{B}} $$

is called a boundary value problem of rank \(N\). The problem of solving

$$ L^{\star }\psi = 0, \qquad \psi \in \Phi _{\mathbf{B}^{\star }} $$

is the adjoint boundary value problem.

In Theorem 37, the adjoint boundary conditions \(\mathbf{B}^{\star }\) are determined uniquely not by \(\mathbf{B}\) but by the pair \((\mathbf{B},\mathbf{B}_{\mathrm{c}})\). However, the function space \(\Phi _{\mathbf{B}^{\star }}\) is determined uniquely from \(\mathbf{B}\). Indeed, because \(\mathbf{B}_{\mathrm{c}}\) is (or, more precisely, the complementary boundary coefficient matrices \(b_{\mathrm{c}}^{r}, \beta _{\mathrm{c}}^{r}\) from which it is composed are) determined by \(\mathbf{B}\) uniquely up to a rank \((2n_{\mathrm{all}}-N)\times (2n_{\mathrm{all}}-N)\) perturbation, so also is \(\mathbf{B}^{\star }\) (or the boundary coefficient matrices from which it is composed).

Finally, we justify that the term “adjoint boundary condition” is faithfully applied in the classical (Lagrange) sense.

Corollary 40

If \(\phi \in \Phi _{\mathbf{B}}\) and \(\psi \in \Phi _{\mathbf{B}^{\star }}\), then \(\langle L\phi , \psi \rangle = \langle \phi , L^{\star }\psi \rangle \).

Proof

We apply the boundary form formula theorem 37 and the definitions of \(\Phi _{\mathbf{B}}\) and \(\Phi _{\mathbf{B}^{\star }}\) to obtain

$$ \langle L\phi , \psi \rangle - \langle \phi , L^{\star }\psi \rangle = \mathbf{B}\phi \odot \mathbf{B}^{\star }_{\mathrm{c}}\psi + \mathbf{B}_{\mathrm{c}}\phi \odot \mathbf{B}^{\star }\psi = \mathbf{0} \odot \mathbf{B}^{\star }_{\mathrm{c}}\psi + \mathbf{B}_{\mathrm{c}}\phi \odot \mathbf{0} = 0. $$

 □

1.4 A.4 Checking Adjointness

Theorem 41

Suppose that vector boundary form \(\mathbf{B}\) has full rank boundary coefficient matrices \(b^{r},\beta ^{r}\in \mathbb{C}^{N\times n_{r}}\), and vector boundary form \(\mathbf{Z}\) has full rank boundary coefficient matrices \(z^{r},\zeta ^{r}\in \mathbb{C}^{(2n_{\mathrm{all}}-N)\times n_{r}}\). The boundary condition \(\mathbf{Z}\) is adjoint to \(\mathbf{B}\) if and only if

$$ \sum ^{m}_{r=1} b^{r} (F^{r})^{-1}(0) z_{\;}^{r\;\dagger } = \sum ^{m}_{r=1} \beta ^{r} (F^{r})^{-1}(1) \zeta _{\;}^{r\;\dagger }, $$
(A.13)

where \(F^{r}(x)\) is the \(n_{r}\times n_{r}\) matrix defined by equation (A.3).

Proof of Theorem 41: “only if”

Suppose that \(\mathbf{B}\) and \(\mathbf{Z}\) are adjoint. By Definition 38, \(\mathbf{Z}\) is determined as in Theorem 37. Thus, in determining \(\mathbf{Z}\), there exist vectors of forms \(\mathbf{B}_{\mathrm{c}}, \mathbf{B}_{\mathrm{c}}^{\star }\) of rank \(2n_{\mathrm{all}}-N\) and \(N\) respectively, such that Theorem 37 holds. As such, there exist full rank matrices \(b_{\mathrm{c}}^{r}, \beta _{\mathrm{c}}^{r} \in \mathbb{C}^{(2n_{ \mathrm{all}}-N)\times n_{r}}\), and \(b_{\mathrm{c}\;}^{r\;\star },\beta _{\mathrm{c}\;}^{r\;\star }\in \mathbb{C}^{N\times n_{r}}\) such that

B c ϕ= r = 1 m b c r ϕ r (0)+ β c r ϕ r (1),rank [ b c 1 : β c 1 : : b c m : β c m ] =2 n all N,
(A.14)
B c ψ= r = 1 m b c r ψ r (0)+ β c r ψ r (1),rank [ b c 1 : β c 1 : : b c m : β c m ] =N.
(A.15)

Moreover, it is reasonable to denote \(\mathbf{Z}\) by \(\mathbf{B}^{\star }\) and \(z^{r},\zeta ^{r}\) by \(b_{\;}^{r\;\star },\beta _{\;}^{r\;\star }\), respectively.

By equations (A.9), (A.8), (A.15), (A.14), and (A.10), then distributing the inner products over the sums,

r = 1 m [ ϕ ψ ] r ( 1 ) [ ϕ ψ ] r ( 0 ) = r = 1 m i = 1 m ( ( b r ϕ r ( 0 ) + β r ϕ r ( 1 ) ) ( b c i ψ i ( 0 ) + β c i ψ i ( 1 ) ) + ( b c r ϕ r ( 0 ) + β c r ϕ r ( 1 ) ) ( b i ψ i ( 0 ) + β i ψ i ( 1 ) ) ) .

By additivity of inner product and the fact that the conjugate transpose is the adjoint with respect to the sesquilinear dot product, we write the above as

r = 1 m i = 1 m ( β c i β r + β i β c r ) ϕ r ( 1 ) ψ i ( 1 ) + ( b c i β r + b i β c r ) ϕ r ( 1 ) ψ i ( 0 ) + ( β c i b r + β i b c r ) ϕ r ( 0 ) ψ i ( 1 ) + ( b c i b r + b i b c r ) ϕ r ( 0 ) ψ i ( 0 ) .
(A.16)

From Green’s formula (A.4), we have

$$ \sum ^{m}_{r=1} [\phi \psi ]_{r}(1) - [\phi \psi ]_{r}(0) = \sum _{r=1}^{m} F^{r}(1) \vec{\phi _{r}}(1) \odot \vec{\psi _{r}}(1) - F^{r}(0) \vec{\phi _{r}}(0) \odot \vec{\psi _{r}}(0). $$
(A.17)

Equating coefficients of each of the inner products in equations (A.16) and (A.17) reveals that

$$ \begin{aligned} \left (\beta _{\mathrm{c}\;}^{i\;\star \;\dagger } \beta ^{r} + \beta _{ \;}^{i\;\star \;\dagger } \beta _{\mathrm{c}}^{r}\right ) &= \bigg\{ \hspace{-0.2em} \textstyle\begin{array}{l} F^{r}(1), \\ 0, \end{array}\displaystyle & \left (b_{\mathrm{c}\;}^{i\;\star \;\dagger } b^{r} + b_{\;}^{i\; \star \;\dagger } b_{\mathrm{c}}^{r}\right ) &= \bigg\{ \hspace{-0.2em} \textstyle\begin{array}{l} -F^{r}(0), \\ 0, \end{array}\displaystyle & &\textstyle\begin{array}{l} \mbox{if }i=r, \\ \mbox{otherwise,}\end{array}\displaystyle \\ \left (b_{\mathrm{c}\;}^{i\;\star \;\dagger } \beta ^{r} + b_{\;}^{i\; \star \;\dagger } \beta _{\mathrm{c}}^{r} \right ) &= \hphantom{\bigg\{ \hspace{-0.2em}} \textstyle\begin{array}{l} 0,\end{array}\displaystyle & \left (\beta _{\mathrm{c}\;}^{i\;\star \;\dagger } b^{r} + \beta _{\;}^{i \;\star \;\dagger } b_{\mathrm{c}}^{r}\right ) &= \hphantom{\bigg\{ \hspace{-0.2em}} \textstyle\begin{array}{l} 0,\end{array}\displaystyle & &\textstyle\begin{array}{l} \mbox{for all } i,r.\end{array}\displaystyle \end{aligned} $$
(A.18)

Note that not all of the 0 matrices above are the same, as each of the above equations relates matrices in \(\mathbb{C}^{n_{i}\times n_{r}}\); the nonzero cases are square matrices in \(\mathbb{C}^{n_{r}\times n_{r}}\).

Interlacing the \(i=r\) cases of the upper two of identities (A.18) as blocks on matrix diagonals, and filling out the matrices with appropriate sized zero blocks elsewhere, we obtain

[ F 1 ( 0 ) 0 0 0 0 0 0 F 1 ( 1 ) 0 0 0 0 0 0 F 2 ( 0 ) 0 0 0 0 0 0 F m 1 ( 1 ) 0 0 0 0 0 0 F m ( 0 ) 0 0 0 0 0 0 F m ( 1 ) ] = [ b c 1 b 1 + b 1 b c 1 0 0 0 0 β c 1 β 1 + β 1 β c 1 0 0 0 0 b c m b m + b m b c m 0 0 0 0 β c m β m + β m β c m ] .
(A.19)

Since the boundary matrices \(F^{r}\) are each nonsingular, the block diagonal matrix on the left of equation (A.19) must also be invertible. Premultiplying on both sides by the inverse yields the following expression for the identity matrix

[ ( F 1 ) 1 ( 0 ) ( b c 1 b 1 + b 1 b c 1 ) 0 0 ( F m ) 1 ( 1 ) ( β c m β m + β m β c m ) ] = [ ( F 1 ) 1 ( 0 ) b c 1 ( F 1 ) 1 ( 0 ) b 1 ( F 1 ) 1 ( 1 ) β c 1 ( F 1 ) 1 ( 1 ) β 1 ( F m ) 1 ( 0 ) b c m ( F m ) 1 ( 0 ) b m ( F m ) 1 ( 1 ) β c m ( F m ) 1 ( 1 ) β m ] [ b 1 β 1 b m β m b c 1 β c 1 b c m β c m ] ;
(A.20)

the equation is justified by using the rest of identities (A.18) to show that all blocks off the diagonal are zero blocks of appropriate dimension. Since the two matrices in the product on the right of equation (A.20) are square and full rank, they are inverse to each other, and so we have, for identity matrices \(\mathrm{Id}\),

[ Id N × N 0 N × ( 2 n all N ) 0 ( 2 n all N ) × N Id ( 2 n all N ) × ( 2 n all N ) ] = [ b 1 β 1 b m β m b c 1 β c 1 b c m β c m ] [ ( F 1 ) 1 ( 0 ) b c 1 ( F 1 ) 1 ( 0 ) b 1 ( F 1 ) 1 ( 1 ) β c 1 ( F 1 ) 1 ( 1 ) β 1 ( F m ) 1 ( 0 ) b c m ( F m ) 1 ( 0 ) b m ( F m ) 1 ( 1 ) β c m ( F m ) 1 ( 1 ) β m ] .
(A.21)

The top right block (that is, the block which contains neither complementary boundary coefficient matrices nor adjoint complementary boundary coefficient matrices) yields

b 1 ( F 1 ) 1 ( 0 ) b 1 + β 1 ( F 1 ) 1 ( 1 ) β 1 + b m ( F m ) 1 ( 0 ) b m + β m ( F m ) 1 ( 1 ) β m = 0 N × ( 2 n all N ) ,

from which it follows

$$ \sum ^{m}_{r=1} b^{r} (F^{r})^{-1}(0) b_{\;}^{r\;\star \;\dagger } = \sum ^{m}_{r=1} \beta ^{r} (F^{r})^{-1}(1) \beta _{\;}^{r\;\star \; \dagger }. $$

 □

Proof of Theorem 41: “if”

Suppose that \(\mathbf{Z}\) is a vector of boundary forms with boundary coefficient matrices \(z^{r},\zeta ^{r}\)

$$ \mathbf{Z} \psi = \sum ^{m}_{r=1} z^{r} \vec{\psi }_{r}(0) + \zeta ^{r} \vec{\psi }_{r}(1), $$

and

$$ \mathrm{rank} \begin{bmatrix} z^{1} : \zeta ^{1} : {}\ldots {} : z^{m} : \zeta ^{m} \end{bmatrix} = 2n_{\mathrm{all}}-N, $$

for which equation (A.13) holds. Then

$$ \mathrm{rank} \begin{bmatrix} z_{\;}^{1\;\dagger } \\ \zeta _{\;}^{1\;\dagger } \\ \vdots \\ z_{\;}^{m\;\dagger } \\ \zeta _{\;}^{m\;\dagger } \end{bmatrix} = 2n_{\mathrm{all}}-N $$

and equation (A.13) implies

$$ \begin{bmatrix} b^{1} : \beta ^{1} : {}\ldots {} : b^{m} : \beta ^{m} \end{bmatrix} \begin{bmatrix} -F^{1}(0)^{-1} z_{\;}^{1\;\dagger } \\ F^{1}(1)^{-1} \zeta _{\;}^{1\;\dagger } \\ \vdots \\ -F^{m}(0)^{-1} z_{\;}^{m\;\dagger } \\ F^{m}(1)^{-1} \zeta _{\;}^{m\;\dagger } \end{bmatrix} = 0_{N\times (2n_{\mathrm{all}}-N)}. $$
(A.22)

Since \(F^{r}(0), F^{r}(1)\) are non-singular for each \(r\), the \(2n_{\mathrm{all}}-N\) columns of the matrix

$$ \mathscr {H} := \begin{bmatrix} -F^{1}(0)^{-1} z_{\;}^{1\;\dagger } \\ F^{1}(1)^{-1} \zeta _{\;}^{1\;\dagger } \\ \vdots \\ -F^{m}(0)^{-1} z_{\;}^{m\;\dagger } \\ F^{m}(1)^{-1} \zeta _{\;}^{m\;\dagger } \end{bmatrix} $$

span the solution space of the system (A.22), and \(\mathrm{rank}(\mathscr {H}) = 2n_{\mathrm{all}}- N\).

Suppose that \(\mathbf{B}^{\star }\) is adjoint to \(\mathbf{B}\) and has boundary coefficient matrices \(b_{\;}^{r\;\star },\beta _{\;}^{r\;\star }\). Following the argument in the “only if” proof, equation (A.21) holds, and both matrices on the right are full rank. Therefore, the \(2n_{\mathrm{all}}-N\) columns of the rank \(2n_{\mathrm{all}}- N\) matrix

$$ \mathscr{H} := \begin{bmatrix} -F^{1}(0)^{-1} b_{\;}^{1\;\star \;\dagger } \\ F^{1}(1)^{-1} \beta _{\;}^{1\;\star \;\dagger } \\ \vdots \\ -F^{m}(0)^{-1} b_{\;}^{m\;\dagger } \\ F^{m}(1)^{-1} \beta _{\;}^{m\;\star \;\dagger } \end{bmatrix} $$

also span the solution space of equation (A.22). Therefore, there is a nonsingular matrix \(A\) of dimension \((2n_{\mathrm{all}}- N)\) for which \(\mathscr {H}=\mathscr{H}A\). But then

$$ F^{r}(0)^{-1} z_{\;}^{r\;\dagger } = F^{r}(0)^{-1} b_{\;}^{r\;\star \; \dagger } A, \qquad \qquad F^{1}(1)^{-1} \zeta _{\;}^{r\;\dagger } = F^{r}(1)^{-1} \beta _{\;}^{r\;\star \;\dagger } A. $$

Because the inverse of \(F^{r}\) is full rank,

$$ z_{\;}^{r\;\dagger } = b_{\;}^{r\;\star \;\dagger } A, \qquad \qquad \zeta _{ \;}^{r\;\dagger } = \beta _{\;}^{r\;\star \;\dagger } A. $$

That is, the boundary coefficients matrices of \(\mathbf{Z}\) differ from those of \(\mathbf{B}^{\star }\) only by a rank \(2n_{\mathrm{all}}- N\) perturbation; \(\mathbf{Z}\) is also adjoint to \(\mathbf{B}\) and \(\Phi _{\mathbf{Z}}=\Phi _{\mathbf{B}^{\star }}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aitzhan, S., Bhandari, S. & Smith, D.A. Fokas Diagonalization of Piecewise Constant Coefficient Linear Differential Operators on Finite Intervals and Networks. Acta Appl Math 177, 2 (2022). https://doi.org/10.1007/s10440-021-00456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00456-9

Keywords

Mathematics Subject Classification (2010)

Navigation