Skip to main content

Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

  • Chapter
  • First Online:
Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Abstract

We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples.

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. ArXiv e-prints (2015)

    Google Scholar 

  2. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a Fractional Laplacian. ArXiv e-prints (2016)

    Google Scholar 

  3. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017). Doi: 10.1016/j.cma.2017.08.019

    Article  MathSciNet  Google Scholar 

  4. Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36(6), 1901–1932 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bogdan, K., Burdzy, K., Chen, Z.Q.: Censored stable processes. Probab. Theory Relat. Fields 127(1), 89–152 (2003)

    Article  MathSciNet  Google Scholar 

  6. Borthagaray, J.P., Del Pezzo, L.M., Martinez, S.: Finite element approximation for the fractional eigenvalue problem. ArXiv e-prints (2016)

    Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.Q., Kim, P.: Green function estimate for censored stable processes. Probab. Theory Relat. Fields 124(4), 595–610 (2002)

    Article  MathSciNet  Google Scholar 

  9. Ciarlet, P.: Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21(3), 173–180 (2013)

    Article  MathSciNet  Google Scholar 

  10. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  11. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)

    Article  MathSciNet  Google Scholar 

  12. Erichsen, S., Sauter, S.A.: Efficient automatic quadrature in 3-d Galerkin BEM. Comput. Methods Appl. Mech. Eng. 157(3–4), 215–224 (1998)

    Article  MathSciNet  Google Scholar 

  13. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York, NY (2004)

    Book  Google Scholar 

  14. Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101(1), 75–90 (1961)

    Article  MathSciNet  Google Scholar 

  15. Golovin, A.A., Matkowsky, B.J., Volpert, V.A.: Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251–272 (2008)

    Article  MathSciNet  Google Scholar 

  16. Graham, I.G., Hackbusch, W., Sauter, S.A.: Hybrid Galerkin boundary elements: theory and implementation. Numer. Math. 86(1), 139–172 (2000)

    Article  MathSciNet  Google Scholar 

  17. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MathSciNet  Google Scholar 

  18. Koto, T.: IMEX Runge–Kutta schemes for reaction–diffusion equations. J. Comput. Appl. Math. 215(1), 182–195 (2008)

    Article  MathSciNet  Google Scholar 

  19. McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, (2000)

    MATH  Google Scholar 

  20. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, de Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter & Co., Berlin (2012)

    MATH  Google Scholar 

  21. Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sauter, S.A., Schwab, C.: Boundary Element Methods, pp. 183–287. Springer, Berlin (2011)

    Chapter  Google Scholar 

  23. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  24. Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinb.: Sect. A Math. 144(04), 831–855 (2014)

    Article  MathSciNet  Google Scholar 

  25. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  26. Sloan, I.H.: Error analysis of boundary integral methods. Acta Numer. 1, 287–339 (1992)

    Article  MathSciNet  Google Scholar 

  27. Sloan, I.H., Spence, A.: The Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA J. Numer. Anal. 8(1), 105–122 (1988)

    Article  MathSciNet  Google Scholar 

  28. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  29. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. SeMA J.: Boletín de la Sociedad Española de Matemática Aplicada 49, 33–44 (2009)

    Google Scholar 

  30. West, B.J.: Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, New York (2016)

    MATH  Google Scholar 

  31. Yan, Y., Sloan, I.H., et al.: On integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 549–579 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the MURI/ARO on “Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications” (W911NF-15-1-0562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ainsworth .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of Expressions for Singular Contributions

The contributions \(a^{K\times \tilde {K}}\) and a K×e as given in Eqs. (3) and (4) for touching elements K and \(\tilde {K}\) contain removable singularities. In order to make these contributions amenable to numerical quadrature, the singularities need to be lifted. We outline the derivation for d = 2 dimensions.

The expression for \(a^{K\times \tilde {K}}\) can be transformed into integrals over the reference element \(\hat {K}\):

$$\displaystyle \begin{aligned} &a^{K\times\tilde{K}}(\phi_{i},\phi_{j}) \\ =& \frac{C(2,s)}{2} \int_{K} \; d \mathbf{x} \int_{\tilde{K}} \; d \mathbf{y} \frac{\left(\phi_{i}(\mathbf{x})-\phi_{i}(\mathbf{y})\right)\left(\phi_{j}(\mathbf{x})-\phi_{j}(\mathbf{y})\right)}{\left|\mathbf{x}-\mathbf{y}\right|{}^{2+2s}} \\ =& \frac{C(2,s)}{2}\frac{\left|K\right|}{\left|\hat{K}\right|} \frac{\left|\tilde{K}\right|}{\left|\hat{K}\right|} \int_{\hat{K}} \; d \hat{\mathbf{x}} \int_{\hat{K}} \; d \hat{\mathbf{y}} \frac{\left(\phi_{i}(\mathbf{x}\left(\hat{\mathbf{x}}\right))-\phi_{i}(\mathbf{y}\left(\hat{\mathbf{y}}\right))\right) \left(\phi_{j}(\mathbf{x}\left(\hat{\mathbf{x}}\right))-\phi_{j}(\mathbf{y}\left(\hat{\mathbf{y}}\right))\right)}{\left|\mathbf{x}\left(\hat{\mathbf{x}}\right)-\mathbf{y}\left(\hat{\mathbf{y}}\right)\right|{}^{2+2s}}. \end{aligned} $$

Similarly, by introducing the reference edge \(\hat {e}\), we obtain

$$\displaystyle \begin{aligned} a^{K\times e}(\phi_{i},\phi_{j}) &= \frac{C(2,s)}{2s} \int_{K} \; d \mathbf{x} \int_{e} \; d \mathbf{y} \frac{\phi_{i}\left(\mathbf{x}\right) \phi_{j}\left(\mathbf{x}\right) ~ \mathbf{n}_{e}\cdot\left(\mathbf{x}-\mathbf{y}\right)}{\left|\mathbf{x}-\mathbf{y}\right|{}^{2+2s}} \\ &= \frac{C(2,s)}{2s} \frac{\left|K\right|}{\left|\hat{K}\right|} \frac{\left|e\right|}{\left|\hat{e}\right|} \int_{\hat{K}} \; d \hat{\mathbf{x}} \int_{\hat{e}} \; d \hat{\mathbf{y}} \frac{\phi_{i}\left(\mathbf{x}\left(\hat{\mathbf{x}}\right)\right) \phi_{j}\left(\mathbf{x}\left(\hat{\mathbf{x}}\right)\right) ~ \mathbf{n}_{e}\cdot\left(\mathbf{x}\left(\hat{\mathbf{x}}\right)-\mathbf{y}\left(\hat{\mathbf{y}}\right)\right)}{\left|\mathbf{x}\left(\hat{\mathbf{x}}\right)-\mathbf{y}\left(\hat{\mathbf{y}}\right)\right|{}^{2+2s}} \end{aligned} $$

for touching elements K and edges e. If K and \(\tilde {K}\) or e have c ≥ 1 common vertices, and if we designate by λ k, k = 0, …, 6 − c the barycentric coordinates of \(K\cup \tilde {K}\) or K ∪ e respectively (cf. Fig. 17), we have

$$\displaystyle \begin{aligned} \lambda_{k(i)}(\hat{\mathbf{x}}) &= \phi_{i}\left(\mathbf{x}\left(\hat{\mathbf{x}}\right)\right), \end{aligned} $$
Fig. 17
figure 17

Numbering of local nodes for touching triangular elements K and \( \tilde {K}\) or element K and edge e. (a) \(K\cap \tilde {K}=K\). (b) \(K\cap \tilde {K}=\)edge. (c) \(K\cap \tilde {K}=\)vertex. (d) K ∩ e = e. (e) K ∩ e = vertex

where k(i) is the local index on \(K\cup \tilde {K}\) or K ∪ e of the global degree of freedom i. Moreover, we have

$$\displaystyle \begin{aligned} \mathbf{x}\left(\hat{\mathbf{x}}\right) - \mathbf{y}\left(\hat{\mathbf{y}}\right) &= \sum_{k=0}^{6-c} \lambda_{k}\left(\hat{\mathbf{x}}\right)\mathbf{x}_{k}-\sum_{k=0}^{6-c} \lambda_{k}\left(\hat{\mathbf{y}}\right)\mathbf{x}_{k} \\ &= \sum_{k=0}^{6-c} \left[\lambda_{k}\left(\hat{\mathbf{x}}\right) - \lambda_{k}\left(\hat{\mathbf{y}}\right)\right]\mathbf{x}_{k}. \end{aligned} $$

Here, x k, k = 0, …, 6 − c are the vertices that span \(K\cup \tilde {K}\) or K ∪ e respectively.

By setting

$$\displaystyle \begin{aligned} \psi_{k}\left(\hat{\mathbf{x}},\hat{\mathbf{y}}\right) := \lambda_{k}\left(\hat{\mathbf{x}}\right) - \lambda_{k}\left(\hat{\mathbf{y}}\right), \end{aligned} $$

we can therefore write

$$\displaystyle \begin{aligned} a^{K\times\tilde{K}}(\phi_{i},\phi_{j}) &= \frac{C(2,s)}{2}\frac{\left|K\right|}{\left|\hat{K}\right|} \frac{\left|\tilde{K}\right|}{\left|\hat{K}\right|} \int_{\hat{K}} \; d \hat{\mathbf{x}} \int_{\hat{K}} \; d \hat{\mathbf{y}} \frac{\psi_{k(i)}\left(\hat{\mathbf{x}},\hat{\mathbf{y}}\right) \psi_{k(j)}\left(\hat{\mathbf{x}},\hat{\mathbf{y}}\right)}{\left|\sum_{k=0}^{6-c}\psi_{k}\left(\hat{\mathbf{x}},\hat{\mathbf{y}}\right) \mathbf{x}_{k}\right|{}^{2+2s}}.\end{aligned} $$

By carefully splitting the integration domain \(\hat {K}\times \hat {K}\) into L c parts and applying a Duffy transformation to each part, the contributions can be rewritten into integrals over a unit hyper-cube, where the singularities are lifted.

$$\displaystyle \begin{aligned} \begin{array}{rcl} a^{K\times\tilde{K}}(\phi_{i},\phi_{j}) &\displaystyle =&\displaystyle \frac{C(2,s)}{2} \frac{\left|K\right|}{\left|\hat{K}\right|} \frac{\left|\tilde{K}\right|}{\left|\hat{K}\right|} \\ &\displaystyle &\displaystyle \quad \sum_{\ell=1}^{L_{c}} \int_{[0,1]^{4}} \; d \boldsymbol{\eta} ~ \Bar J^{(\ell,c)}\frac{\Bar \psi_{k(i)}^{(\ell,c)}\left(\boldsymbol{\eta}\right) \Bar \psi_{k(j)}^{(\ell,c)}\left(\boldsymbol{\eta}\right)}{\left|\sum_{k=0}^{2d-c}\Bar\psi_{k}^{(\ell,c)}\left(\boldsymbol{\eta}\right) \mathbf{x}_{k}\right|{}^{2+2s}}. {}\vspace{-3pt} \end{array} \end{aligned} $$
(16)

The details of this approach can be found in Chapter 5 of [22] for the interactions between K and \(\tilde {K}\). We record the obtained expressions in this case.

  • K and \(\tilde {K}\) are identical, i.e. c = 3

    $$\displaystyle \begin{aligned} L_{3}=3,&& \Bar J^{(1,3)}=\Bar J^{(2,3)}=\Bar J^{(3,3)}= \eta_{0}^{3-2s}\eta_{1}^{2-2s}\eta_{2}^{1-2s},\end{aligned} $$
    $$\displaystyle \begin{aligned} \Bar\psi_{k}^{(1,3)} &= \begin{cases} -\eta_{3} \\ \eta_{3}-1 \\ 1 \end{cases} & \Bar\psi_{k}^{(2,3)} &= \begin{cases} -1 \\ 1-\eta_{3} \\ \eta_{3} \end{cases} & \Bar\psi_{k}^{(3,3)} &= \begin{cases} \eta_{3} \\ -1 \\ 1-\eta_{3} \end{cases}\end{aligned} $$
  • K and \(\tilde {K}\) share an edge, i.e. c = 2

    $$\displaystyle \begin{aligned} L_{2}=5, && \Bar J^{(1,2)}=\eta_{0}^{3-2s}\eta_{1}^{2-2s}, \\ && \Bar J^{(2,2)}=\Bar J^{(3,2)}=\Bar J^{(4,2)}=\Bar J^{(5,2)} = \eta_{0}^{3-2s}\eta_{1}^{2-2s}\eta_{2}\end{aligned} $$
    $$\displaystyle \begin{aligned} \Bar\psi_{k}^{(1,2)} &= \begin{cases} -\eta_{2} \\ 1-\eta_{3} \\ \eta_{3} \\ \eta_{2}-1 \end{cases} & \Bar\psi_{k}^{(2,2)} &= \begin{cases} -\eta_{2}\eta_{3} \\ \eta_{2}-1 \\ 1 \\ \eta_{2}\eta_{3}-\eta_{2} \end{cases} & \Bar\psi_{k}^{(3,2)} &= \begin{cases} \eta_{2} \\ \eta_{2}\eta_{3}-1 \\ 1-\eta_{2} \\ -\eta_{2}\eta_{3} \end{cases} \\ \Bar\psi_{k}^{(4,2)} &= \begin{cases} \eta_{2} \eta_{3} \\ 1-\eta_{2} \\ \eta_{2}-\eta_{2} \eta_{3} \\ -1 \end{cases} & \Bar\psi_{k}^{(5,2)} &= \begin{cases} \eta_{2}\eta_{3} \\ \eta_{2}-1 \\ 1-\eta_{2}\eta_{3} \\ -\eta_{2} \end{cases} \end{aligned} $$
  • K and \(\tilde {K}\) share a vertex, i.e. c = 1

    $$\displaystyle \begin{aligned} L_{1}=2, && \Bar J^{(1,1)}= \Bar J^{(2,1)}= \eta_{0}^{3-2s}\eta_{2}\end{aligned} $$
    $$\displaystyle \begin{aligned} \Bar\psi_{k}^{(1,1)} &= \begin{cases} \eta_{2}-1 \\ 1-\eta_{1} \\ \eta_{1} \\ \eta_{2}\eta_{3}-\eta_{2} \\ -\eta_{2}\eta_{3} \end{cases} & \Bar\psi_{k}^{(2,1)} &= \begin{cases} 1-\eta_{2} \\ \eta_{2}-\eta_{2} \eta_{3} \\ \eta_{2}\eta_{3} \\ \eta_{1}-1 \\ -\eta_{1} \end{cases}\end{aligned} $$

We notice that the contributions for identical elements only depend on η 3, so that in fact only one-dimensional integrals need to be computed. Similarly, the cases of common edges or common vertices only require two and three dimensional integration.

In a similar fashion, the integration domain of a K×e can be split into several parts, so that the singularity can be lifted:

$$\displaystyle \begin{aligned} &a^{K\times e}(\phi_{i},\phi_{j}) \\ &= \frac{C(2,s)}{2s} \frac{\left|K\right|}{\left|\hat{K}\right|} \frac{\left|e\right|}{\left|\hat{e}\right|} \int_{[0,1]^{3}} \; d \boldsymbol{\eta} \Bar J^{(\ell,c)} \frac{\phi_{k(i)}^{(\ell,c)}\left(\boldsymbol{\eta}\right) \phi_{k(j)}^{(\ell,c)}\left(\boldsymbol{\eta}\right) ~ \sum_{k=0}^{5-c}\Bar\psi_{k}^{(\ell,c)}\left(\boldsymbol{\eta}\right) \mathbf{n}_{e}\cdot\mathbf{x}_{k}}{\left|\sum_{k=0}^{5-c}\Bar\psi_{k}^{(\ell,c)}\left(\boldsymbol{\eta}\right) \mathbf{x}_{k}\right|{}^{2+2s}}.\end{aligned} $$

Here, \(\phi _{k}^{(\ell ,c)}\) are the expressions for the local shape functions under the Duffy transformations. The obtained expressions are

  • e is an edge of K, i.e. c = 2

    $$\displaystyle \begin{aligned} L_{2}=3, && \Bar J^{(1,2)}=\Bar J^{(2,2)}=\Bar J^{(3,2)}=\eta_{0}^{-2s}\left(1-\eta_{0}\right),\end{aligned} $$
    $$\displaystyle \begin{aligned} \phi_{k}^{(1,2)} &= \begin{cases} 1-\eta_{0}-\eta_{2}+\eta_{0}\eta_{2} \\ \eta_{0}+\eta_{2}-\eta_{0}\eta_{1}-\eta_{0}\eta_{1} \\ \eta_{0}\eta_{1} \end{cases} & \phi_{k}^{(2,2)} &= \begin{cases} 1-\eta_{0}-\eta_{2}+\eta_{0}\eta_{2} \\ \eta_{2}-\eta_{0}\eta_{2} \\ \eta_{0} \end{cases}\\ \phi_{k}^{(3,2)} &= \begin{cases} 1-\eta_{2}+\eta_{0}\eta_{2}-\eta_{0}\eta_{1} \\ \eta_{2}-\eta_{0}\eta_{2} \\ \eta_{0}\eta_{1} \end{cases}\end{aligned} $$
    $$\displaystyle \begin{aligned} \Bar\psi_{k}^{(1,2)} &= \begin{cases} -1 \\ 1-\eta_{1} \\ \eta_{1} \end{cases} & \Bar\psi_{k}^{(2,2)} &= \begin{cases} -\eta_{1} \\ \eta_{1}-1 \\ 1 \end{cases} & \Bar\psi_{k}^{(3,2)} &= \begin{cases} 1-\eta_{1} \\ -1 \\ \eta_{1} \end{cases} \end{aligned} $$

    We notice that for s ≥ 1∕2, the integrand still contains a singularity. In this case, the finite element space V h does not include the degrees of freedom on the boundary. For the interaction of the single degree of freedom that is not on the boundary (k = 2), we obtain

    $$\displaystyle \begin{aligned} \Bar J^{(1,2)}=\Bar J^{(2,2)}=\Bar J^{(3,2)}=\eta_{0}^{2-2s}\left(1-\eta_{0}\right), \end{aligned} $$
    $$\displaystyle \begin{aligned} \phi_{2}^{(1,2)} &= \eta_{1} & \phi_{2}^{(2,2)} &= 1 & \phi_{2}^{(3,2)} &= \eta_{1} \end{aligned} $$

    and \(\Bar \psi _{2}^{\ell ,c}\) as above.

  • K and e share a vertex, i.e. c = 1

    $$\displaystyle \begin{aligned} L_{1}=2, && \Bar J^{(1,1)} = \eta_{0}^{1-2s}, \Bar J^{(2,1)}= \eta_{0}^{1-2s}\eta_{1} \end{aligned} $$
    $$\displaystyle \begin{aligned} \Bar\psi_{k}^{(1,1)} &= \begin{cases} \eta_{2}-1 \\ 1-\eta_{1} \\ \eta_{1} \\ -\eta_{2} \end{cases} & \Bar\psi_{k}^{(2,1)} &= \begin{cases} 1-\eta_{1} \\ \eta_{1}-\eta_{1} \eta_{2} \\ \eta_{1}\eta_{2} \\ -1 \end{cases} \end{aligned} $$

Appendix 2: Proof of Consistency Error Due to Quadrature

Next, we give the proof for the consistency error of the quadrature approximation first stated in Sect. 4.2.

Theorem 3

For d = 2, let \(\mathcal {I}_{K}\) index the degrees of freedom on \(K\in \mathcal {P}_{h}\) , and define \(\mathcal {I}_{K\times \tilde {K}}:=\mathcal {I}_{K}\cup \mathcal {I}_{\tilde {K}}\) . Let k T (respectively k T, ) be the quadrature order used for touching pairs \(K\times \tilde {K}\) (respectively K × e), and let \(k_{NT}\left (K,\tilde {K}\right )\) (respectively \(k_{NT,\partial }\left (K,e\right )\) ) be the quadrature order used for pairs that have empty intersection. Denote the resulting approximation to the bilinear form \(a\left (\cdot ,\cdot \right )\) by \(a_{Q}\left (\cdot ,\cdot \right )\) . Then the consistency error due to quadrature is bounded by

where the errors are given by

$$\displaystyle \begin{aligned} E_{T}&=h^{-2-2s}\rho_{1}^{-2k_{T}},\\ E_{NT} &= \max_{K,\tilde{K}\in\mathcal{P}_{h}, \overline{K}\cap\overline{\tilde{K}}=\emptyset} h^{-2}d_{K,\tilde{K}}^{-2s}\left(\rho_{2}\frac{d_{K,\tilde{K}}}{h}\right)^{-2k_{NT}\left(K,\tilde{K}\right)}, \\ E_{T,\partial} &= h^{-1-2s}\rho_{3}^{-2k_{T,\partial}},\\ E_{NT,\partial} &= \max_{K\in\mathcal{P}_{h}, e\in\mathcal{P}_{h,\partial}, \overline{K}\cap\overline{e}=\emptyset} h^{-1}d_{K,e}^{-2s}\left(\rho_{4}\frac{d_{K,e}}{h}\right)^{-2k_{NT,\partial}\left(K,e\right)}, \end{aligned} $$

\(d_{K,\tilde {K}}:=\inf _{\mathbf {x}\in K, \mathbf {y}\in \tilde {K}}\left |\mathbf {x}-\mathbf {y}\right |\) , \(d_{K,e}:=\inf _{\mathbf {x}\in K, \mathbf {y}\in e}\left |\mathbf {x}-\mathbf {y}\right |\) , and ρ j > 1, j = 1, 2, 3, 4, are constants.

Proof

Let the quadrature rules for the pairs \(K\times \tilde {K}\) and K × e be denoted by \(a^{K\times \tilde {K}}_{Q}\left (\cdot ,\cdot \right )\) and \(a^{K\times e}_{Q}\left (\cdot ,\cdot \right )\). Set

$$\displaystyle \begin{aligned} E_{K\times\tilde{K}}^{i,j} &= a^{K\times\tilde{K}}\left(\phi_{i},\phi_{j}\right)-a_{Q}^{K\times\tilde{K}}\left(\phi_{i},\phi_{j}\right),\\ E_{K\times e}^{i,j} &= a^{K\times e}\left(\phi_{i},\phi_{j}\right)-a_{Q}^{K\times e}\left(\phi_{i},\phi_{j}\right). \end{aligned} $$

For u, v ∈ V h, we set

$$\displaystyle \begin{aligned} E_{K\times\tilde{K}}(u,v)&= \sum_{i\in\mathcal{I}_{K\times\tilde{K}}} \sum_{j\in\mathcal{I}_{K\times\tilde{K}}} u_{i}v_{j}E_{K\times\tilde{K}}^{i,j}, \\ E_{K\times e}(u,v)&= \sum_{i\in\mathcal{I}_{K}} \sum_{j\in\mathcal{I}_{K}} u_{i}v_{j}E_{K\times e}^{i,j} \end{aligned} $$

so that

$$\displaystyle \begin{aligned} \left|E_{K\times\tilde{K}}(u,v)\right| &\leq \left(\max_{i,j}\left|E_{K\times\tilde{K}}^{i,j}\right|\right) \sum_{i\in\mathcal{I}_{K\times\tilde{K}}} \left|u_{i}\right| \sum_{j\in\mathcal{I}_{K\times\tilde{K}}} \left|v_{j}\right| \\ &\leq \left(\max_{i,j}\left|E_{K\times\tilde{K}}^{i,j}\right|\right) \left|\mathcal{I}_{K\times\tilde{K}}\right| \sqrt{\sum_{i\in\mathcal{I}_{K\times\tilde{K}}} \left|u_{i}\right|{}^{2}} \sqrt{\sum_{j\in\mathcal{I}_{K\times\tilde{K}}} \left|v_{j}\right|{}^{2}}, \\ \left|E_{K\times e}(u,v)\right| &\leq \left(\max_{i,j}\left|E_{K, e}^{i,j}\right|\right) \sum_{i\in\mathcal{I}_{K}} \left|u_{i}\right| \sum_{j\in\mathcal{I}_{K}} \left|v_{j}\right| \\ &\leq \left(\max_{i,j}\left|E_{K, e}^{i,j}\right|\right) \left|\mathcal{I}_{K}\right| \sqrt{\sum_{i\in\mathcal{I}_{K}} \left|u_{i}\right|{}^{2}} \sqrt{\sum_{j\in\mathcal{I}_{K}} \left|v_{j}\right|{}^{2}} \end{aligned} $$

Since

$$\displaystyle \begin{aligned} \sum_{i\in\mathcal{I}_{K\times\tilde{K}}} \left|u_{i}\right|{}^{2} &\leq C\left[h_{K}^{-d}\int_{K}u^{2} + h_{\tilde{K}}^{-d}\int_{\tilde{K}}u^{2}\right], \\ \sum_{i\in\mathcal{I}_{K}} \left|u_{i}\right|{}^{2} &\leq C h_{K}^{-d}\int_{K}u^{2}, \end{aligned} $$

we find

Because

and

we obtain

For d = 2, using Theorem 6 stated below permits to conclude. □

Theorem 6 ([22], Theorems 5.3.23 and 5.3.24)

If K and \(\tilde {K}\) (K and e) are touching elements, then

$$\displaystyle \begin{aligned} \left|E_{K\times\tilde{K}}^{i,j}\right|&\leq Ch^{2-2s}\rho_{1}^{-2k_{T}},\\ \left|E_{K\times e}^{i,j}\right| &\leq Ch^{2-2s}\rho_{3}^{-2k_{T,\partial}}, \end{aligned} $$

where ρ 1, ρ 3 > 1 and k T , k T, are the quadrature orders in every dimension of Eqs.(5) and (6).

If K and \(\tilde {K}\) (K and e) are not touching, then

$$\displaystyle \begin{aligned} \left|E_{K\times\tilde{K}}^{i,j}\right| &\leq C h^{2} d_{K,\tilde{K}}^{-2s}\tilde{\rho}_{2}\left(K,\tilde{K}\right)^{-2k_{NT}},\\ \left|E_{K\times e}^{i,j}\right| &\leq C h^{2} d_{K,e}^{-2s}\tilde{\rho}_{4}\left(K,e\right)^{-2k_{NT.\partial}}, \end{aligned} $$

where \(d_{K,\tilde {K}}:=dist(K,\tilde {K})\) , d K,e := dist(K, e), \(\tilde {\rho }_{2}(K,\tilde {K}):=\rho _{2}\max \left \{\frac {d_{K,\tilde {K}}}{h},1\right \}\) , and \(\tilde {\rho }_{4}(K,\tilde {K}):=\rho _{4}\max \left \{\frac {d_{K,e}}{h},1\right \}\) , with ρ 2, ρ 4 > 1, and k NT , k NT, are the quadrature order in every dimension of Eqs.(3) and (4).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ainsworth, M., Glusa, C. (2018). Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains. In: Dick, J., Kuo, F., Woźniakowski, H. (eds) Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham. https://doi.org/10.1007/978-3-319-72456-0_2

Download citation

Publish with us

Policies and ethics