Skip to main content
Log in

Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study an inverse problem to determine an unknown source term in the time-fractional diffusion equation with variable coefficients in a general bound domain. This problem is ill-posed, i.e., the solution (if it exists) does not depend continuously on the data. We introduce the fractional Landweber iterative regularization method to solve inverse source problem. Based on an a conditional stability result, error convergent estimates between the exact solution and the regularization solution by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule are also given. Some numerical experiments prove that the fractional Landweber method provides better numerical result than the classical Landweber method under the same iterative steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berkowitz, B., Scher, H., Silliman, S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1), 149–158 (2000)

    Article  Google Scholar 

  2. El-Sayed, A.M.A., Aly, M.A.E.: Continuation theorem of fractional order evolutionary integral equations. J. Comput. Appl. Math. 9(2), 525–533 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Basu, M., Acharya, D.P.: On quadratic fractional generalized solid bi-criterion transportation problem. J. Appl. Math. Comput. 10(1–2), 131–143 (2002)

    Article  MathSciNet  Google Scholar 

  4. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A, Stat. Mech. Appl. 284(1–4), 376–384 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Metzler, R., Klafter, J.: Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys. Rev. E 61(6), 6308–6311 (2000)

    Article  Google Scholar 

  6. Luchko, Y.: Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14(1), 110–124 (2011)

    Article  MathSciNet  Google Scholar 

  7. Jiang, Y.J., Ma, J.T.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  Google Scholar 

  8. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  9. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56(4), 1138–1145 (2008)

    Article  MathSciNet  Google Scholar 

  10. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187(1), 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  12. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25(11), 115002 (2009)

    Article  MathSciNet  Google Scholar 

  13. Liu, J.J., Yamamoto, M.: A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)

    Article  MathSciNet  Google Scholar 

  14. Zheng, G.H., Wei, T.: A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv. Comput. Math. 36(2), 377–398 (2012)

    Article  MathSciNet  Google Scholar 

  15. Wei, T., Wang, J.G.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78(4), 95–111 (2014)

    Article  MathSciNet  Google Scholar 

  16. Yang, F., Liu, X., Li, X.X., Ma, C.Y.: Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation. Adv. Differ. Equ. 2017(1), 388 (2017)

    Article  MathSciNet  Google Scholar 

  17. Chi, G.S., Li, G.S., Jia, X.Z.: Numerical inversions of a source term in the fade with a Dirichlet boundary condition using final observations. Comput. Math. Appl. 62(4), 1619–1626 (2011)

    Article  MathSciNet  Google Scholar 

  18. Wei, H., Chen, W., Sun, H.G., Li, X.C.: A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Eng. 18(7), 945–956 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zhang, Y., Xu, X.: Inverse source problem for a fractional diffusion equation. Inverse Probl. 27(3), 035010 (2011)

    Article  MathSciNet  Google Scholar 

  20. Wang, J.G., Wei, T., Zhou, Y.B.: Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 37(18–19), 8518–8532 (2013)

    Article  MathSciNet  Google Scholar 

  21. Yang, F., Ren, Y.P., Li, X.X.: Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl. Sci. Eng. 26(8), 1109–1129 (2018)

    Article  MathSciNet  Google Scholar 

  22. Yang, F., Zhang, Y., Li, X.X.: Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer. Algorithms 83, 1509–1530 (2020)

    Article  MathSciNet  Google Scholar 

  23. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2012)

    Article  MathSciNet  Google Scholar 

  24. Klann, E., Maass, P., Ramlau, R.: Two-step regularization methods for linear inverse problems. J. Inverse Ill-Posed Probl. 14(6), 583–609 (2006)

    Article  MathSciNet  Google Scholar 

  25. Klann, E., Ramlau, R.: Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 025018 (2008)

    Article  MathSciNet  Google Scholar 

  26. Han, Y.Z., Xiong, X.T., Xue, X.M.: A fractional Landweber iterative regularization method for solving backward time-fractional diffusion problem. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.02.017

    Article  MATH  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  28. Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68(68), 39–57 (2013)

    Article  MathSciNet  Google Scholar 

  29. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problem. Mathematics and Its Applications. Kluwer Academic, Boston (1996)

    Book  Google Scholar 

  30. Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22(3), 87–99 (2006)

    Article  MathSciNet  Google Scholar 

  31. Podlubny, I., Kacenak, M.: Mittag-Leffler Function, The MATLAB Routine (2012). Available at http://www.mathworks.com/matlabcentral/fileexchange

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yang.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The project is supported by the National Natural Science Foundation of China (No. 11961044), the Doctor Fund of Lan Zhou University of Technology, the Natural Science Foundation of Gansu Provice (No. 21JR7RA214).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Fu, JL., Fan, P. et al. Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem. Acta Appl Math 175, 13 (2021). https://doi.org/10.1007/s10440-021-00442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00442-1

Keywords

Mathematics Subject Classification

Navigation