Skip to main content
Log in

Fine Spectral Analysis of Isotropic Partly Elastic Neutron Transport Operators

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper deals with spectral theory of a new class of neutron transport operators involving collision operators of the form \(K=K_{i}+K_{e}\) where \(K_{i}\) (resp. \(K_{e}\)) describes the inelastic (resp. elastic) collisions of neutrons with the host material. We give a fine analysis of their asymptotic point spectra for isotropic space homogeneous cross sections in bounded geometries. We provide a new formalism relying on spectral analysis of some non compact symmetrizable operators arising in transport theory. Additional results on essential spectra are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duderstadt, J.J., Martin, W.R.: Transport Theory. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon, Oxford (1989)

    MATH  Google Scholar 

  3. Greenberg, W., van der Mee, C., Protopopescu, V.: Boundary Value Problems in Abstract Kinetic Theory. Birkhäuser, Basel (1987)

    Book  MATH  Google Scholar 

  4. Larsen, E.W., Zweifel, P.F.: Spectrum of the linear transport operator. J. Math. Phys. 15, 1987–1997 (1974)

    Article  MathSciNet  Google Scholar 

  5. Kaper, H.G., Lekkerkerker, C.G., Hejtmanek, J.: Spectral Methods in Linear Transport Theory. Birkhäuser, Basel (1982)

    MATH  Google Scholar 

  6. Kato, T.: Perturbation Theory of Linear Operators. Springer, Berlin (1984)

    MATH  Google Scholar 

  7. Lax, P.D.: Symmetrizable linear transformations. Commun. Pure Appl. Math. 7, 633–647 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lehner, J., Wing, M.: On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Commun. Pure Appl. Math. 8, 217–234 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lehner, J., Wing, M.: Solution of the linearised Boltzmann transport equation for th slab geometry. Duke Math. J. 23, 125–142 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mohamed, Y.: Théorie spectrale d’opérateurs symétrisables non compacts et modèles cinétiques partiellement élastiques. Thèse de Doctorat de l’Université de Franche-Comté (juillet 2015)

  11. Mokhtar-Kharroubi, M.: Mathematical Topics in Neutron Transport Theory. New Aspects. Series on Advances in Mathematics for Applied Sciences, vol. 46. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  12. Mokhtar-Kharroubi, H., Mokhtar-Kharroubi, M.: On symmetrizable operators on Hilbert spaces. Acta Appl. Math. 102(1), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mokhtar-Kharroubi, M., Mohamed, Y.: Spectral analysis of non-compact symmetrizable operators on Hilbert spaces. Math. Methods Appl. Sci. 38(11), 2316–2335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mokhtar-Kharroubi, M.: Spectral theory for neutron transport. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds.) Evolutionary Equations with Applications in Natural Sciences. Lectures Notes in Mathematics, vol. 2126, pp. 319–386. Springer, Berlin (2015)

    Google Scholar 

  15. Mokhtar-Kharroubi, M., Mohamed, Y.: Work in preparation

  16. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  17. Nieto, J.I.: On the essential spectrum of symmetrizable operators. Math. Ann. 178, 145–153 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reid, W.T.: Symmetrizable completely continuous transformations in Hilbert spaces. Duke Math. J. 18, 41–56 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sbihi, M.: Analyse spectrale de modèles neutroniques. Thèse de Doctorat de l’Université de Franche-Comté, No. 1091 (2005)

  20. Sbihi, M.: Spectral theory of neutron transport semigroups with partly elastic collision operators. J. Math. Phys. 47, 123502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schaefer, H.H.: Some spectral properties of positive linear operators. Pac. J. Math. 10(3), 1009–1019 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ukai, S.: Real eigenvalues of the monoenergetic transport operator for a homogeneous medium. J. Nucl. Sci. Technol. 3, 263–266 (1966)

    Article  Google Scholar 

  23. Ukaï, S.: Eigenvalues of the neutron transport operator for a homogeneous moderator. J. Math. Anal. Appl. 30, 297–314 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quing, X.B., Gui, X.C., Jiu, W.Y.: Existence of infinitely many complex eigenvalues for the monoenergetic transport operator. Lett. Math. Phys. 11, 95–105 (1986)

    Article  MathSciNet  Google Scholar 

  25. Yang, M., Kuang, Z., Wang, X.: Complex eigenvalues of a monoenergetic neutron transport operator. Transp. Theory Stat. Phys. 26, 253–261 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Mokhtar-Kharroubi.

Appendix

Appendix

For reader’s convenience, we recall here some functional analytic results from [12, 13] on symmetrizable operators on Hilbert spaces (see also [7, 17, 18] for classical results). Let \(H\) be a complex Hilbert space with scalar product \((.,.)\) and norm

$$ \vert x \vert :=\sqrt{(x,x)}. $$

For any bounded linear operator \(O\in \mathcal{L}(H)\), we denote its operator norm by \(\Vert O \Vert _{\mathcal{L}(H)}\) or more simply by \(\Vert O \Vert \) for the sake of brevity. Let \(S\in \mathcal{L}(H)\) be a nonnegative (not necessarily injective) self-adjoint operator on \(H\). An operator \(G\in \mathcal{L}(H)\) is said to be (left)-symmetrizable by \(S\) if \(SG\) is self-adjoint. For brevity, we say that \(G\) is symmetrizable by \(S\). If in addition

$$ Gx=\lambda x \quad (\lambda \neq 0\ \text{and}\ x\neq 0)\Rightarrow Sx \neq 0 $$

then we say that \(G\) is fully symmetrizable by \(S\); in this case, it is easy to see that the eigenvalues of \(G\) must be real since \(Sx\neq 0\) amounts to \((Sx,x)>0\) (\(S\) and \(\sqrt{S}\) have the same kernel). A symmetrizable operator \(G\) is strongly symmetrizable by \(S\) if

$$ Ker(S)\subset Ker(G); $$

in this case, it is also easy to see that \(G\) is necessarily fully symmetrizable by \(S\). A sufficient condition of strong symmetrizability is e.g. the existence of a positive constant \(c\) such that

$$ \vert Gx \vert \leq c \vert \sqrt{S}x \vert ,\quad x \in H; $$
(37)

this assumption is satisfied in the context of neutron transport theory (see (10)). We point out that under (37) the spectrum of \(G\) is real (see [12, Lemma 3 and Theorem 3(ii)]) (in general, the spectrum of a symmetrizable operator need not be real, see e.g. [17]); if in addition \(H\) is ordered by a generating cone \(H_{+}\) and if \(G\) is positive (in the sense that \(G\) leaves invariant the positive cone \(H_{+}\)) then

$$ r_{\sigma }(G)=\sup_{ \{ x\in H;\ (Sx,x)=1 \} }(SGx,x) $$
(38)

(see [12, Corollary 5]).

Definition 37

For any \(G\in \mathcal{L}(H)\) symmetrizable by \(S\), we define

$$ \alpha^{+}(G):=\inf \bigl\{ \lambda >0;\ \sigma (G)\cap ( \lambda ,+ \infty ) \text{ consists at most of discrete spectrum} \bigr\} $$

and

$$ \alpha^{-}(G):=\sup \bigl\{ \lambda < 0;\ \sigma (G)\cap ( - \infty , \lambda ) \text{ consists at most of discrete spectrum} \bigr\} $$

where “discrete spectrum” refers to isolated eigenvalues with finite algebraic multiplicity.

In general

$$ \max \bigl\{ \alpha^{+}(G),-\alpha^{-}(G) \bigr\} \leq r_{ess}(G) $$

where \(r_{ess}(G)\) is the essential spectral radius of \(G\) (i.e. the radius of the smallest closed disc with center 0 containing the essential spectrum of \(G\)). However, under (37) the spectrum of \(G\) is real and

$$ \max \bigl\{ \alpha^{+}(G),-\alpha^{-}(G) \bigr\} =r_{ess}(G). $$

We recall W.T. Reid’s inequality:

Lemma 38

([18, Theorem 2.1 and Corollary 1])

Let \(G\in \mathcal{L}(H)\) be symmetrizable by \(S\). Then, for all \(x,y\in H\),

$$ \bigl\vert (x,SGy) \bigr\vert \leq \Vert G \Vert \sqrt{(x,Sx)} \sqrt{(y,Sy)}. $$
(39)

In particular

$$ \bigl\vert (x,SGx) \bigr\vert \leq \Vert G \Vert (x,Sx). $$
(40)

By restricting ourselves to the positive spectrum of \(G\) we have:

Theorem 39

([13, Theorem 9])

Let \(H\) be a complex Hilbert space and let \(G\in \mathcal{L}(H)\) be fully symmetrizable by a nonnegative self-adjoint operator \(S\in \mathcal{L}(H)\). We assume that:

$$ \beta_{1}^{+}:=\sup_{ \{ x\in H;\ (Sx,x)=1 \} }(SGx,x)> \alpha^{+}(G). $$

Then:

  1. (i)

    \(\beta_{1}^{+}\) is an isolated eigenvalue of \(G\) associated to an eigenvector \(e_{1}^{+}\) such that \((Se_{1}^{+}, e_{1}^{+})=1\).

  2. (ii)

    Let

    $$ \beta_{2}^{+}:= \sup_{ \{ x\in H;\ (Sx,x)=1,(Sx,e_{1}^{+})=0 \} }(SGx,x). $$

    If \(\beta_{2}^{+}>\alpha^{+}(G)\) then \(\beta_{2}^{+}\) is an isolated eigenvalue of \(G\) associated to an eigenvector \(e_{2}^{+}\) such that \((Se_{2}^{+},e_{2}^{+})=1\) and \((Se_{2}^{+},e_{1}^{+})=0\). More generally, if we have built eigenvalues

    $$ \beta_{1}^{+},\beta_{2}^{+},\ldots, \beta_{n-1}^{+}>\alpha^{+}(G) $$

    whose corresponding eigenvectors \(e_{1}^{+},e_{2}^{+},\ldots,e_{n-1}^{+}\) satisfy

    $$ \bigl(Se_{i}^{+},e_{j}^{+}\bigr)= \delta_{ij},\ i,j=1,2,\ldots,n-1 $$

    and if

    $$ \beta_{n}^{+}:= \sup_{ \{ x\in H;\ (Sx,x)=1,(Sx,e_{j}^{+})=0\ \forall j=1,2,\ldots,n-1 \} }(SGx,x)> \alpha^{+}(G) $$

    then \(\beta_{n}^{+}\) is also an isolated eigenvalue of \(G\) associated to an eigenvector \(e_{n}^{+}\) such that \((Se_{n}^{+},e_{n}^{+})=1\) and \((Se_{n}^{+},e_{j}^{+})=0,\ \forall j=1,2,\ldots,n-1\).

We recall more practical \(\sup \inf \) characterizations of the positive eigenvalues of \(G\) located outside its essential disc. Let \(\mathcal{V}_{n}\) denotes the class of \(n\)-dimensional subspaces \(E_{n}\) of \(\overline{\operatorname{Im}(S)}\). We define the sequence of reals

$$ \rho_{n}^{+}=\sup_{E_{n}\in \mathcal{V}_{n}}\inf _{x\in E_{n},(Sx,x)=1}(SGx,x)\quad (n\in \mathbb{N} ). $$

Theorem 40

([13, Theorem 14])

Let the assumptions of Theorem 39 be satisfied. Let \(\beta_{1}^{+}\geqslant \beta _{2}^{+}\geqslant \cdots\geqslant \beta_{n}^{+}\geqslant ..>\alpha^{+}(G)\) be the eigenvalues of \(G\) (repeated according to their geometrical multiplicities) located on the right of \(\alpha^{+}(G)\). Then

$$ \beta_{n}^{+}=\rho_{n}^{+}. $$

Theorem 41

([13, Theorem 34])

Let (37) be satisfied. If \(G\) has exactly \(m\) eigenvalues \(>\alpha^{+}(G)\) (counted according to their multiplicities) then \(\rho_{n}^{+}=\alpha^{+}(G)\) for all \(n>m\).

Finally, we recall that the Schechter essential spectrum of a general closed operator \(B\) on \(H\) is defined by

$$ \sigma_{ess}(B):=\bigcap_{K\in \mathcal{K}(H)}\sigma (B+K) $$
(41)

where \(\mathcal{K}(H)\) denotes the space of linear compact operators on \(H\) (or equivalently by the complement of the Fredholm domain of \(B\) with index zero, see [2, Theorem 1.4, p. 415]). In particular, if \(\lambda \in \mathbb{C} \) admits a singular Weyl sequence \(( x_{n} ) _{n} \subset H\), i.e.

$$ \vert x_{n} \vert =1,\quad x_{n}\rightharpoonup 0 \quad (\textit{weak} \text{ convergence}) \text{ and}\quad \vert Bx_{n}-\lambda x_{n} \vert \rightarrow 0 $$
(42)

then \(\lambda \in \sigma_{ess}(B)\); this follows from the fact that, for any singular Weyl sequence \(( x_{n} ) _{n}\), \(\vert Kx _{n} \vert \rightarrow 0\) for any \(K\in \mathcal{K}(H)\). We call Weyl essential spectrum of \(B\) the set of \(\lambda^{\prime }s\) admitting a singular Weyl sequence and denote it by \(\sigma_{W}(B)\). Thus \(\sigma_{W}(B)\subset \sigma_{ess}(B)\) and the inclusion is proper in general.

Theorem 42

([13, Theorem 33])

Let (37) be satisfied. Then the Schechter essential spectrum of \(G\) is equal to its Weyl essential spectrum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar-Kharroubi, M., Mohamed, Y. Fine Spectral Analysis of Isotropic Partly Elastic Neutron Transport Operators. Acta Appl Math 156, 33–78 (2018). https://doi.org/10.1007/s10440-017-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-017-0154-x

Keywords

Mathematics Subject Classification

Navigation