Skip to main content
Log in

Construction of Autonomous Conservation Laws

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In mathematical physics conservation laws are of very special importance. For variational problems they can be determined by means of Noether’s theorem, whereas for general differential equations a direct method by Anco and Bluman (Eur. J. Appl. Math., 13:545–566, 2002, Eur. J. Appl. Math., 13:567–585, 2002) is available. In this paper, a theorem mapping nonautonomous and nonhomogeneous quasilinear first order partial differential equations to autonomous and homogeneous quasilinear first order partial differential equations is used to obtain from a system of first order balance laws an autonomous system of conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  2. Bressan, A.: Hyperbolic Systems of Conservation Laws. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  4. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  5. Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  6. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  7. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations: Symmetries, Exact Solutions and Conservation Laws. CRC Press, Boca Raton (1994, 1995, 1996)

    MATH  Google Scholar 

  8. Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  9. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica. Springer, New York (2000)

    Book  MATH  Google Scholar 

  10. Meleshko, S.V.: Methods for Constructing Exact Solutions of Partial Differential Equations. Springer, New York (2005)

    MATH  Google Scholar 

  11. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2009)

    Google Scholar 

  12. Olver, P.J.: Symmetry groups and group invariant solutions of partial differential equations. J. Differ. Geom. 14, 497–542 (1979)

    MATH  MathSciNet  Google Scholar 

  13. Oliveri, F., Speciale, M.P.: Exact solutions to the equations of ideal gas-dynamics by means of the substitution principle. Int. J. Non-Linear Mech. 33, 585–592 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Oliveri, F., Speciale, M.P.: Exact solutions to the equations of perfect gases through Lie group analysis and substitution principles. Int. J. Non-Linear Mech. 34, 1077–1087 (1999)

    Article  MathSciNet  Google Scholar 

  15. Oliveri, F., Speciale, M.P.: Exact solutions to the unsteady equations of perfect gases through Lie group analysis and substitution principles. Int. J. Non-Linear Mech. 37, 257–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oliveri, F., Speciale, M.P.: Exact solutions to the ideal magneto-gas-dynamics equations through Lie group analysis and substitution principles. J. Phys. A, Math. Gen. 38, 8803–8820 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Margheriti, L., Speciale, M.P.: Unsteady solutions of Euler equations generated by steady solutions. Acta Appl. Math. 113, 289–303 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 235–257 (1918). Transp. Theory Stat. Phys. 1, 186–207 (1971)

  19. Kumei, S., Bluman, G.W.: When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 42, 1157–1173 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Donato, A., Oliveri, F.: Reduction to autonomous form by group analysis and exact solutions of axi-symmetric MHD equations. Math. Comput. Model. 18, 83–90 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Donato, A., Oliveri, F.: Linearization procedure of nonlinear first order systems of PDE’s by means of canonical variables related to Lie groups of point transformations. J. Math. Anal. Appl. 188, 552–568 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Donato, A., Oliveri, F.: When nonautonomous equations are equivalent to autonomous ones. Appl. Anal. 58, 313–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Donato, A., Oliveri, F.: How to build up variable transformations allowing one to map nonlinear hyperbolic equations into autonomous or linear ones. Transp. Theory Stat. Phys. 25, 303–322 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Currò, C., Oliveri, F.: Reduction of nonhomogeneous quasilinear 2×2 systems to homogeneous and autonomous form. J. Math. Phys. 49, 103504 (2008), 11 pp.

    Article  MathSciNet  Google Scholar 

  25. Oliveri, F.: Lie symmetries of differential equations: classical results and recent contributions. Symmetry 2, 658–706 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oliveri, F.: General dynamical systems described by first order quasilinear PDEs reducible to homogeneous and autonomous form. Int. J. Non-Linear Mech. 47, 53–60 (2012)

    Article  Google Scholar 

  27. Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations. Part II: General treatment. Eur. J. Appl. Math. 13, 567–585 (2002)

    MATH  MathSciNet  Google Scholar 

  29. Boyer, T.H.: Continuous symmetries and conserved currents. Ann. Phys. 42, 445–466 (1967)

    Article  MATH  Google Scholar 

  30. Rogers, C., Ruggeri, T.: A reciprocal Bäcklund transformation: application to a non-linear hyperbolic model in heat conduction. Lett. Nuovo Cimento 2, 289–296 (1985)

    Article  MathSciNet  Google Scholar 

  31. Chesnokov, A.: Symmetries and exact solutions of the rotating shallow-water equations. Eur. J. Appl. Math. 20, 461–477 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Oliveri, F., Speciale, M.P.: Equivalence transformations of quasilinear first order systems and reduction to autonomous and homogeneous form. Acta Appl. Math. 122, 447–460 (2012)

    MATH  MathSciNet  Google Scholar 

  33. Oliveri, F., Speciale, M.P.: Reduction of balance laws to conservation laws by means of equivalence transformations. J. Math. Phys. 54, 041506 (2013)

    Article  MathSciNet  Google Scholar 

  34. Gorgone, M., Oliveri, F., Speciale, M.P.: Reduction of balance laws in (3+1)-dimensions to autonomous conservation laws by means of equivalence transformations. Acta Appl. Math. (2014). doi:10.1007/s10440-014-9929-5

    MATH  Google Scholar 

Download references

Acknowledgements

Work supported by G.N.F.M. of I.N.d.A.M., and by local grants of University of Messina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Oliveri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveri, F. Construction of Autonomous Conservation Laws. Acta Appl Math 132, 443–456 (2014). https://doi.org/10.1007/s10440-014-9918-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9918-8

Keywords

Navigation