Skip to main content

Construction of Conservation Laws Using Symmetries

  • Chapter
  • First Online:
Similarity and Symmetry Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 73))

Abstract

The concept of nonlinear self-adjointness of differential equations, introduced by the author in 2010, is discussed in detail. All linear equations and systems are nonlinearly self-adjoint. Moreover, the class of nonlinearly self-adjoint equations includes all nonlinear equations and systems having at least one local conservation law. It follows, in particular, that the integrable systems possessing infinite set of Lie-Bäcklund symmetries (higher-order tangent transformations) are nonlinearly self-adjoint. An explicit formula for conserved vectors associated with symmetries is provided for all nonlinearly self-adjoint differential equations and systems. The number of equations contained in the systems under consideration can be different from the number of dependent variables. A utilization of conservation laws for constructing exact solutions is discussed and illustrated by computing non-invariant solutions of the Chaplygin equations in gas dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [2]. An approach in terms of variational principles is developed in [5].

  2. 2.

    He mentions in his paper that the work has been done in 1950 and published in Report # 336 of the Institute of Chemical Physics of the USSR Academy of Sciences.

  3. 3.

    Weymann uses Dreicer’s kinetic equation [20] for a photon gas interacting with a plasma which is slightly different from the equation used by Kompaneets.

  4. 4.

    The operator identity (179) was called in [31] the Noether identity and used for simplifying the proof of Noether’s theorem. A simple proof of the identity (179) can be found in [32] where Eq. (179) is written as Eq. (19).

  5. 5.

    One can verify that if one uses the canonical form of the operator \(X,\) then the operator identity (179) becomes identical with Eqs. (3), (6) in Noether’s paper [29] except for the notation. Noether comments that in the case of the first-order Lagrangians her Eq. (3) is identical with the central equation of Lagrange (Eqs. (4) and (5) in [29]).

  6. 6.

    This statement is applicable to nonlinear ODEs as well, see [35].

References

  1. Ibragimov, N.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007). doi:10.1016/j.jmaa.2006.10.078

    Article  MATH  MathSciNet  Google Scholar 

  2. Ibragimov, N.: Integrating factors, adjoint equations and lagrangians. J. Math. Anal. Appl. 318, 742–757 (2006). doi:10.1016/j.jmaa.2005.11.012

    Article  MATH  MathSciNet  Google Scholar 

  3. Ibragimov, N.: Quasi-self-adjoint differential equations. Arch. ALGA 4, 55–60 (2007)

    Google Scholar 

  4. Ibragimov, N.: Elementary lie Group Analysis and Ordinary Differential Equations. Wiley, New York (1999)

    MATH  Google Scholar 

  5. Atherton, R., Homsy, G.: On the existence and formulation of variational principles for nonlinear differential equations. Stuides Appl. Math. 54, 31–60 (1975)

    MATH  MathSciNet  Google Scholar 

  6. Ibragimov N., Torrisi M., Tracina R.: Quasi self-adjoint nonlinear wave equations. J. Phys. A: Math. Theor. 43 (2010). doi:10.1088/1751-8113/43/44/442001

  7. Fornberg, B., Whitham, G.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. 289, 373–404 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rosen, G.: Nonlinear heat conduction in solid \(H_2\). Phys. Rev. 19, 2398–2399 (1979)

    Article  Google Scholar 

  9. Bluman, G., Kumei, S.: On the remarkable nonlinear diffusion equation \(\frac{\partial }{\partial x}\left[a(u+b)^{-2}\frac{\partial u}{\partial x} \right]-\frac{\partial u}{\partial t}=0\). J. Math. Phys. 21, 1019–1023 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ibragimov, N.: Transformation Groups in Mathematical Physics. Nauka, Moscow (1983) (English trans.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985))

    Google Scholar 

  11. Rogers, C.: Application of a reciprocal transformation to a two phase stefan problem. J. Phys. A: Math. Gen. 18, L105–L109 (1985)

    Article  MATH  Google Scholar 

  12. Rogers, C.: On a class of moving boundary value problems in nonlinear heat conduction: application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  13. Ibragimov, N.: Nonlinear self-adjointness in constructing conservation laws, Arch. ALGA 7(8), 1–99 (2010–2011)

    Google Scholar 

  14. Bluman, G., Cheviakov, A., Anco, S.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  15. Ibragimov N. (ed.): CRC handbook of lie group analysis of differential equations. vol. 1 1994, vol. 2 1995, vol. 3 1996, CRC Press, Boca Raton

    Google Scholar 

  16. Ibragimov, N. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca Raton (1995)

    Google Scholar 

  17. Ibragimov, N. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996)

    Google Scholar 

  18. Kompaneets A.: The establishment of thermal equilibrium between quanta and electrons, Zh. Eksp. Teor. Fiz 31, 876–885 (1956). English translations. Soviet Phys. JETP 4, 730–885 (1957)

    Google Scholar 

  19. Weymann, R.: Diffusion approximation for a photon gas interacting with a plasma via the compton effect. Phys. Fluids 8, 2112–2114 (1965)

    Article  Google Scholar 

  20. Dreicer, H.: Kinetic theory of an electron-photon gas. Phys. Fluids 7, 735–753 (1964)

    Article  MathSciNet  Google Scholar 

  21. Syunyaev, R.: Induced compton scattering by thermal electrons and low-frequency spectrum of radio sourses. Astronomicheski Zhurnal 48 244–252 (1971) (English transl., Soviet Astronomy - AJ 15 190–196 (1971))

    Google Scholar 

  22. Weymann, R.: The energy spectrum of radiation in the expanding universe. Astrophys. J. 145, 560–571 (1966)

    Article  Google Scholar 

  23. Chluba, J., Sunyaev, R.: Evolution of low-frequency features in the CMB spectrum due to stimulated compton scattering and doppler broadening. Astron. Astrophys. 488, 861–865 (2008)

    Article  Google Scholar 

  24. Akhatov, I., Gazizov, R., Ibragimov, N.: Nonlocal symmetries: heuristic approach, Itogi Nauki i Tekhniki. Sovremennie Probl. Matematiki 34 (1989) 3–84, English translations. J. Soviet Math. 55, 1401–1450 (1991)

    Google Scholar 

  25. Ibragimov, N., Torrisi, M., Valenti, A.: Preliminary group classification of equations \(v_{tt}= f (x, v_x)v_{xx}+ g (x, v_x)\). J. Math. Phys. 32, 2988–2995 (1991). Reprinted in: N.H. Ibragimov, Selected Work, vol. II, ALGA Publications, Karlskrona 2006, Paper 7

    Google Scholar 

  26. Tsyganov, M., Biktashev, V., Brindley, J., Holden, A., Ivanitsky G.: Waves in systems with cross-diffusion as a new class of nonlinear waves. Uspekhi Fizicheskikh Nauk 177 275–300 (2007) (English transl., Physics - Uspekhi 50 263–286 (2007))

    Google Scholar 

  27. Krichever, I., Novikov, S.: Curves, holomorphic bundles over algebraic, equations, nonlinear, Nauk, Uspekhi Matematicheskikh 35, 47–68. English translations. Russian Math. Surveys 35, 53–80 (1980)

    Google Scholar 

  28. Galiakberova, L., Ibragimov, N.: Nonlinear self-adjointness of the Krichever-Novikov equation. Commun. Nonlinear Sci. Numer. Simul. 19, 361–363 (2013)

    Article  MathSciNet  Google Scholar 

  29. Noether, E.: Invariante Variationsprobleme, Königliche Gesellschaft der Wissenschaften zu Göttingen, Nachrichten. Mathematisch-Physikalische Klasse, Heft 2: (1918) 235–257. English transl. Transp. Theory Stat. Phy. 1, 186–207 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ibragimov, N.: Invariant variational problems and conservation laws. Teoreticheskaya i Matematicheskaya Fizika 1, 350–359 (1969) (English trans.: Theor. Math. Phys. 1 267–276 (1969). Reprinted in: N.H. Ibragimov, Selected Works, vol. I, ALGA Publications, Karlskrona 2006, Paper 8)

    Google Scholar 

  31. Ibragimov, N.: The Noether Identity (In Russian), Continuum Dynamics, vol. 38, pp. 26–32. Institute of Hydrodynamics, USSR Academy Science, Siberian Branch, Novosibirsk (1979)

    Google Scholar 

  32. Rosen, J.: Some Properties of the Euler-Lagrange Operators, Preprint TAUP-269-72. Tel-Aviv University, Tel-Aviv (1972)

    Google Scholar 

  33. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Wiley, New York (1989)

    Book  Google Scholar 

  34. Stepanov, V.: A Course of Differential Equations (In Russian), 7\(^{th}\) Edn. State Publisher of Phys.- Math. Literature, Moscow (1958)

    Google Scholar 

  35. Ibragimov, N.: Classical and new results on integrating factors. Arch. ALGA 5, 63–120 (2008)

    Google Scholar 

  36. Dennemeyer, R.: Introduction to Partial Differential Equations and Boundary Value Problems. McGraw-Hill Book Company, New York (1986)

    Google Scholar 

  37. Anco, S., Bluman, G.: Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78, 2869–2873 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schäfer, T., Wayne, C.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196, 90–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sakovich, A., Sakovich, S.: Solitary wave solutions of the short pulse equation. J. Phys A: Math. Gen. 39, L361–367 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ibragimov, N., Rogers, C.: On infinitesimal reciprocal-type transformations in gasdynamics. Lie group connections and nonlinear self-adjointness. Ufa Math. J. 4, 191–202 (2012)

    Google Scholar 

  42. Laplace, P.: Traité de Méchanique Céleste. Paris: vol. 1, 1798. Reprinted in P. S. Laplace, Ouvres complétes, vol. I, Gauthier-Villars, Paris 1878; English trans.: New York 1966

    Google Scholar 

  43. Terentyev, E., Shmyglevskii, J.: A complete system of equations in divergence form for the dynamics of an ideal gas. Zh. Vychisl. Mat. i Mat. Fiz. 15 1535–1544 (1975) (English transl., USSR Comput. Math. and Math. Phys. 15 (1975) 167–176)

    Google Scholar 

  44. Ibragimov, N.: Conservation Laws in Hydrodynamics, Dokl. Akad. Nauk SSSR 210, 1307–1309 (1973). English trans.: Soviet Physics Dokl. 18 1973/74. Original unabridged version see in: N.H. Ibragimov, Selected Works, vol. I, ALGA Publications, Karlskrona 2006, Paper 12

    Google Scholar 

  45. Dorodnitsyn V. and Svirshchevskii S., On Lie-Bäcklund Groups Admitted by the Heat Equation with a Source, Preprint 101, Inst. Applied Math., USSR Acad. Sci., Moscow 1983.

    Google Scholar 

  46. Steinberg, S., Wolf, K.: Symmetry, conserved quantities and moments in diffusive equations. J. Math. Anal. Appl. 80, 36–45 (1981)

    Google Scholar 

  47. Barcilon, V., Richter, F.: Nonlinear waves in compacting media. J. Fluid Mech. 164, 429–448 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  48. Harris, S.: Conservation laws for a nonlinear wave equation. Nonlinearity 9, 187–208 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Maluleke, G., Mason, D.: Derivation of conservation laws for a nonlinear wave equation modelling melt migration using lie point symmetry generators. Commun. Nonlinear Sci. Numer. Simul. 12, 423–433 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Scott, D., Stevenson, D.: Magma solitons. Geophys. Res. Lett. 11, 1161–1164 (1984)

    Article  Google Scholar 

  51. Scott, D., Stevenson, D.: Mechanics of fluid-rock systems. Ann. Rev. Fluid Mech. 23, 305–339 (1991)

    Article  Google Scholar 

  52. Khamitova, R.: Symmetries and nonlocal conservation laws of the general magma equation. Commun. Nonlinear Sci. Numer. Simul. 14, 3754–3769 (2009). doi:10.1016/j.cnsns.2008.08.009

    Article  MATH  MathSciNet  Google Scholar 

  53. Ibragimov, N., Ibragimov, R.N.: Group Analysis of Nonlinear Internal Waves in Oceans I: Lagrangian, Conservation laws, Invariant Solutions. Arch. ALGA 6, 19–44 (2009). arXiv: math-ph 1108–1877v1, 28 pp. 2011

    Google Scholar 

Download references

Acknowledgments

I am cordially grateful to my wife Raisa for reading the manuscript carefully. Without her help and questions the work would be less palatable and contain essentially more misprints. My thanks are due to Sergey Svirshchevskii for a discussion of the material presented in Sect. 2.1. I acknowledge a financial support of the Government of Russian Federation through Resolution # 220, Agreement # 11.G34.31.0042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail H. Ibragimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibragimov, N.H. (2014). Construction of Conservation Laws Using Symmetries. In: Ganghoffer, JF., Mladenov, I. (eds) Similarity and Symmetry Methods. Lecture Notes in Applied and Computational Mechanics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-08296-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08296-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08295-0

  • Online ISBN: 978-3-319-08296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics