Skip to main content
Log in

A Global Multidimensional Shock Wave for the Steady Supersonic Isothermal Flow

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In the reference (Cui and Yin, Pacific J. Math. 233:257–289, 2007), under the assumptions that the supersonic incoming flow is isothermal and symmetrically perturbed with respect to a uniform supersonic constant state, the authors have shown the global existence and stability of a symmetric supersonic conic shock for such a supersonic flow past a circular cone. In this paper, we will remove all the symmetric assumptions in the previous paper and study the global existence problem on a really multidimensional shock wave. More concretely, we establish the global existence and stability of a three-dimensional supersonic conic shock wave for a perturbed steady supersonic isothermal flow past an infinitely long conic body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alinhac, S.: Blowup of small data solutions for a quasilinear wave equation in two space dimensions. Ann. Math. 149(2), 151–181 (1999)

    MathSciNet  Google Scholar 

  2. Alinhac, S.: Blowup of small data solutions for a quasilinear wave equation in two space dimensions. Acta Math. 182, 1–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, S.: Existence of stationary supersonic flows past a pointed body. Arch. Ration. Mech. Anal. 156, 141–181 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, S., Xin, Z., Yin, H.: Global shock wave for the supersonic flow past a perturbed cone. Commun. Math. Phys. 228, 47–84 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Reprinting of the 1948 Original. Applied Mathematical Sciences., vol. 21. Springer, New York (1976)

    Google Scholar 

  6. Cui, D., Yin, H.: Global supersonic conic shock wave for the steady supersonic flow past a cone: isothermal gas. Pac. J. Math. 233, 257–289 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Godin, P.: Global shock waves in some domains for the isentropic irrotational potential flow equations. Commun. Partial Differ. Equ. 22, 1929–1997 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Godin, P.: Long time existence of a class of perturbations of planar shock fronts for second order hyperbolic conservation laws. Duke Math. J. 60(2), 425–463 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, London (1964)

    Google Scholar 

  10. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, London (1997)

    MATH  Google Scholar 

  11. Keel, M., Smith, H., Sogge, C.D.: Almost global existence for quasilinear wave equations in three space dimensions. J. Am. Math. Soc. 17, 109–153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Keyfitz, B.L., Warnecke, G.G.: The existence of viscous profiles and admissibility for transonic shocks. Commun. Partial Differ. Equ. 16, 1197–1221 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klainerman, S.: The Null Condition and Global Existence to Nonlinear Wave Equations. Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1. Lectures in Appl. Math., vol. 23. Am. Math. Soc., Providence (1986)

    Google Scholar 

  14. Klainerman, S., Sideris, T.C.: On almost global existence for nonrelativistic wave equations in 3D. Commun. Pure Appl. Math. 49, 307–321 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, J., Ingo, W., Yin, H.: On the global existence and stability of a three-dimensional supersonic conic shock wave (2011). arXiv:1110.0626

  16. Lien, W., Liu, T.: Nonlinear stability of a self-similar 3-dimensional gas flow. Commun. Math. Phys. 204, 525–549 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws. Appl. Math. Sci., vol. 53. Springer, New York (1984)

    Book  MATH  Google Scholar 

  18. Majda, A.: One perspective on open problems in multi-dimensional conservation laws. In: Multi-Dimensional Hyperbolic Problems and Computation, vol. 23. Springer, Berlin (1990), vol. 29, pp. 217–237

    Google Scholar 

  19. Majda, A., Thomann, E.: Multidimensional shock fronts for second wave equations. Commun. Partial Differ. Equ. 12, 777–828 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rauch, J.: BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Commun. Math. Phys. 106, 481–484 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–487 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 1(177), 45–135 (2009)

    Article  Google Scholar 

  23. Wu, S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184(1), 125–220 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xin, Z.: Some Current Topics in Nonlinear Conservation Laws, Some Current Topics on Nonlinear Conservation Laws. xiii–xxxi AMS/IP Stud. Adv. Math., vol. 15. Am. Math. Soc., Providence (2000)

    Google Scholar 

  25. Xin, Z., Yin, H.: Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone. Anal. Appl. 4, 101–132 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yin, H.: The blowup mechanism of small data solutions for the quasilinear wave equations in three space dimensions. Acta Math. Sin. Engl. Ser. 17(1), 35–76 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yin, H.: Formation and construction of a shock wave for 3-D compressible Euler equations with the spherical initial data. Nagoya Math. J. 175, 125–164 (2004)

    MATH  MathSciNet  Google Scholar 

  28. Zheng, Y.: Systems of Conservation Laws. Two-Dimensional Riemann Problems. Progr. Nonlinear Differential Appl., vol. 28. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

The author would like to express his gratitude to Professor Yin Huicheng, Nanjing University, for suggesting the problem and giving many instructions. The author would also like to thank associate Professor Li Jun, Nanjing University, for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Li.

Additional information

Supported by Scientific Research Fund of Nanjing Institute of Technology (Grant No. YKJ201339), NNSF of China (Grant No. 11326152) and NSF of Jiangsu Province of China (Grant No. BK20130736).

Appendix

Appendix

Proof of Lemma 3.2

First we estimate P 5(s) and \(P_{1}'(s)\). By (3.3), Lemmas 2.1–2.2 and Remark 2.1,

$$\begin{aligned} P_5(s) =&\frac {1}{{\hat{u}}_z^2(s)-A} \biggl(s \hat{u}_r(s) \hat{u}_r'(s) +s \hat{u}_z(s) \hat{u}_z'(s) -\frac {A}{2} \biggr) \\ =&\biggl\{ \bigl(b_0+O\bigl(e^{-n_0 q_0^{2}}\bigr)\bigr) \frac {b_0q_0}{1+b_0^2}\frac {-q_0}{(1+b_0^2)^2}\bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr)\bigr) \\ &{}-\bigl(b_0^2+O\bigl(e^{-n_0 q_0^{2}}\bigr)\bigr) \frac {q_0}{1+b_0^2}\frac {-q_0}{(1+b_0^2)^2}\bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr)\bigr) - \frac {A}{2}\biggr\} \\ &{}\times\biggl\{ \frac {q_0^2}{(1+b_0^2)^2}\bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr)-A\biggr\} ^{-1} \\ =&\frac {-\frac {A}{2}((1+b_0^2)^2)}{q_0^2-A(1+b_0^2)^2}\bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr)\bigr) \\ =&-\frac {A(1+b_0^2)^2}{2q_0^2}+O\bigl(q_0^{-4}\bigr). \end{aligned}$$

Next we derive an expression for \(P_{1}'(s)\). Since

$$P_1(s)=\frac {\hat{u}_{z}(s)\hat{u}_{r}(s)}{\hat{u}_z^2(s)-A}, $$

then

$$P_1'(s)= \frac {\hat{u}_z'(s)\hat{u}_r(s)+\hat{u}_z(s)\hat{u}_r'(s)}{\hat{u}_z^2(s)-A} -\frac {2\hat{u}_r(s)\hat{u}_z(s)^2\hat{u}_z'(s)}{(\hat{u}_z^2(s)-A)^2}. $$

It follows from Lemmas 2.1–2.2, Remark 2.1 and a direct computation that

$$\begin{aligned} P_1'(s) =&\frac {\frac {b_0 q_0}{(1+b_0^2)^2}\frac {b_0 q_0}{1+b_0^2} (1+O(e^{-n_0 q_0^{2}}) )-\frac {q_0}{(1+b_0^2)^2} \frac {q_0}{1+b_0^2} (1+O(e^{-n_0 q_0^{2}}) )}{\frac {q_0^2}{(1+b_0^2)^2} (1+O(e^{-n_0 q_0^{2}}) ) -A} \\ &{}-\frac {2(\frac {q_0}{1+b_0^2})^2\frac {b_0q_0}{1+b_0^2}\frac {b_0q_0}{(1+b_0^2)^2} (1+O(e^{-n_0 q_0^{2}}) )}{ (\frac {q_0^2}{(1+b_0^2)^2} (1+O(e^{-n_0 q_0^{2}}) ) -A)^2} \\ =&\frac {(b_0^2-1)(1-\frac {A(1+b_0^2)^2}{q_0^2})-2b_0^2}{(1+b_0^2)(1-\frac {A(1+b_0^2)^2}{q_0^2})^2} \bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr) \\ =&-1-\frac {A(1+b_0^2)(1+3b_0^2)}{q_0^2}+O\bigl(q_0^{-4}\bigr). \end{aligned}$$

Other estimates in Lemma 3.2 can be carried out analogously in terms of the expressions for P i , 1≤i≤5, in (3.3) and Lemmas 2.1 and 2.2; we omit the details here. The proof of Lemma 3.2 is completed. □

Next, we provide the proof of Lemma 3.3.

Proof of Lemma 3.3

From the expressions for B i , i=1,2,3, in (3.6) and Lemmas 2.1 and 2.2, one has

$$\begin{aligned} B_1 =& \biggl(\frac {\hat{\rho}(s_0)b_0q_0}{A(1+b_0^2)} \biggl(\frac {b_0^2q_0^2}{(1+b_0^2)^2} + \frac {q_0}{(1+b_0^2)} \biggl(\frac {q_0}{(1+b_0^2)}-q_0 \biggr) \biggr) +2 \frac {\hat{\rho}(s_0)b_0q_0}{1+b_0^2} \biggr) \\ &{}\times \bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr) \\ =&\frac {2\hat{\rho}(s_0)b_0q_0}{1+b_0^2} \bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr). \end{aligned}$$

Similarly,

$$\begin{aligned} &B_2=\frac {(1-b_0^2)\hat{\rho}(s_0)q_0}{1+b_0^2} \bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr), \\ &B_3=-\frac {\hat{\rho}(s_0)b_0q_0^2}{(1+b_0^2)^2} \bigl(1+O\bigl(e^{-n_0 q_0^{2}}\bigr) \bigr). \end{aligned}$$

On the other hand, expressions for μ i (i=1,2) can be obtained from the estimates of B i which completes the proof of Lemma 3.3. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. A Global Multidimensional Shock Wave for the Steady Supersonic Isothermal Flow. Acta Appl Math 133, 45–85 (2014). https://doi.org/10.1007/s10440-013-9859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9859-7

Keywords

Mathematics Subject Classification (2010)

Navigation