Skip to main content
Log in

Asymptotic Behavior for Petrovsky Equation with Localized Damping

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251–283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  2. Alabau-Boussouira, F.: Piecewise multiplier method and nonlinear integral inequalities for Petrovsky equation with nonlinear dissipation. J. Evol. Equ. 6, 95–112 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alabau-Boussouira, F.: Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. Nonlinear Differ. Equ. Appl. 14, 643–669 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254, 1342–1372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alves, C.O., Cavalcanti, M.M.: On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. Partial Differ. Equ. 34, 377–411 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buriol, C.: Energy decay rates for the Timoshenko system of thermoelastic plates. Nonlinear Anal. 64, 92–108 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cavalcanti, M., Domingos Cavalcanti, V., Martinez, P.: Existence and decay rate estimates for the nonlinear boundary damping and source term. J. Differ. Equ. 203(1), 119–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Martinez, P.: General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. 68, 177–193 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-a sharp result. Trans. Am. Math. Soc., to appear

  11. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Uniform stabilization of the wave equation on compact manifolds and locally distributed damping-a sharp result. J. Math. Anal. Appl. 351, 661–674 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Charão, R.C., Bisognin, E., Bisognin, V., Pazoto, A.F.: Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping. In: Prog. Nonlinear Differ. Equ. Appl., vol. 66, pp. 67–91. Birkhauser, Basel (2006)

    Google Scholar 

  13. Chueshov, I., Lasiecka, I.: Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping. Memoires of AMS. American Mathematical Society, Providence (2008)

    Google Scholar 

  14. Daoulatli, M., Lasiecka, I., Toundykov, D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete Contin. Dyn. Syst., Ser. S 2, 67–94 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Duyckaerts, T., Zhang, X., Zuazua, E.: On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. I.H. Poincaré AN 25, 1–41 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haraux, A.: Nonlinear Evolution Equations: Global Behavior of Solutions. Lecture Notes in Mathematics, vol. 841. Springer, Berlin (1981)

    MATH  Google Scholar 

  17. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method, Collection RMA, vol. 36. Masson/Wiley, Paris/Chicester (1994)

    MATH  Google Scholar 

  18. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics (1989)

  19. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 8, 507–533 (1993)

    MathSciNet  Google Scholar 

  20. Liu, K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35, 1574–1590 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60, 54–69 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, W.J., Zuazua, E.: Decay for dissipative wave equations. Ricerche Math. 46, 61–75 (1999)

    MathSciNet  Google Scholar 

  23. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Math. Complut. Madr. 12(1), 251–283 (1999)

    MATH  Google Scholar 

  25. Massarolo, C.P., Menzala, G.P., Pazoto, A.F.: On the uniform decay for the Korteweg-de Vries equation with weak damping. Math. Meth. Appl. Sci. 30, 1419–1435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305, 403–417 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Racke, R.: Lectures on Nonlinear Evolution Equations, Initial Value Problems. Aspects Math. E19. Vieweg & Sohn, Braunschweig (1992)

    MATH  Google Scholar 

  28. Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal. 184, 49–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zheng, S.: Nolinear Evolution Equation. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  30. Zuazua, E.: Uniform stabilization of the wave equation by nonlinear feedbacks. SIAM J. Control Optim. 28, 265–268 (1989)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosen Han.

Additional information

This work was supported by the National Natural Science Foundation of China 10771032, the Natural Science Foundation of Jiangsu province BK2006088 and JSPS Innovation Program CX08B_001Z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Wang, M. Asymptotic Behavior for Petrovsky Equation with Localized Damping. Acta Appl Math 110, 1057–1076 (2010). https://doi.org/10.1007/s10440-009-9493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9493-6

Keywords

Mathematics Subject Classification (2000)

Navigation