Skip to main content
Log in

Homoclinic Orbits of Nonlinear Functional Difference Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, by using the critical point theory, we obtain the existence of a nontrivial homoclinic orbit which decays exponentially at infinity for nonlinear difference equations containing both advance and retardation without any periodic assumptions. Moreover, if the nonlinearity is an odd function, the existence of an unbounded sequence of nontrivial homoclinic orbits which decay exponentially at infinity is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Perera, K., O’Regan, D.: Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Anal. 58, 69–73 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, R.P., Perera, K., O’Regan, D.: Multiple positive solutions of singular discrete p-Laplacian problems via variational methods. Adv. Differ. Equ. 2005, 93–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, P., Fang, H.: Existence of periodic and subharmonic solutions for second-order p-Laplacian difference equations. Adv. Differ. Equ. (2008, in press)

  5. Ding, Y., Girardi, M.: Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Anal. 38, 391–415 (1999)

    Article  MathSciNet  Google Scholar 

  6. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  7. Guo, Z.M., Xu, Y.T.: Existence of periodic solutions to a class of second-order neutral differential difference equations. Acta Anal. Funct. Appl. 5, 13–19 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Guo, Z.M., Yu, J.S.: The existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China, Ser. A 46, 506–515 (2003)

    MathSciNet  Google Scholar 

  9. Guo, Z.M., Yu, J.S.: The existence of periodic and subharmonic solutions of subquadratic second order difference equations. J. Lond. Math. Soc. 68, 419–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, Z.M., Yu, J.S.: Applications of critical point theory to difference equations. Fields Inst. Commun. 42, 187–200 (2004)

    MathSciNet  Google Scholar 

  11. Hofer, H., Wysocki, K.: First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann. 288, 483–503 (1990)

    Article  MathSciNet  Google Scholar 

  12. Ma, M.J., Guo, Z.M.: Homoclinic orbits for second order self-adjoint difference equations. J. Math. Anal. Appl. 323, 513–521 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  14. Omana, W., Willem, M.: Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 5, 1115–1120 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Pankov, A., Zakharchenko, N.: On some discrete variational problems. Acta Appl. Math. 65, 295–303 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars, Paris (1899)

    MATH  Google Scholar 

  17. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Am. Math. Soc., Providence (1986)

    Google Scholar 

  18. Schulman, L.S.: Some differential-difference equations containing both advance and retardation. J. Math. Phys. 15, 295–298 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Smets, D., Willem, M.: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 149, 266–275 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Szulkin, A., Zou, W.: Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187, 25–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Am. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  22. Yu, J.S., Long, Y.H., Guo, Z.M.: Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation. J. Dynam. Differ. Equ. 16, 575–586 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhou, Z., Yu, J.S., Guo, Z.M.: Periodic solutions of higher-dimensional discrete systems. Proc. R. Soc. Edinb. Sect. A 134, 1013–1022 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H. Homoclinic Orbits of Nonlinear Functional Difference Equations. Acta Appl Math 106, 135–147 (2009). https://doi.org/10.1007/s10440-008-9331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9331-2

Keywords

Mathematics Subject Classification (2000)

Navigation