Skip to main content

Advertisement

Log in

Asymptotics of Recurrence Relation Coefficients, Hankel Determinant Ratios, and Root Products Associated with Laurent Polynomials Orthogonal with Respect to Varying Exponential Weights

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Let Λ denote the linear space over ℝ spanned by z k, k∈ℤ. Define the real inner product 〈, L ×Λ→ℝ, \((f,g)\mapsto \int_{\mathbb{R}}f(s)g(s)\exp (-{N}V(s))\mathop {d}s\) , N∈ℕ, where V satisfies: (i) V is real analytic on ℝ∖{0}; (ii) lim  | x |→∞(V(x)/ln (x 2+1))=+∞; and (iii) lim  | x |→0(V(x)/ln (x −2+1))=+∞. Orthogonalisation of the (ordered) base \(\lbrace 1,z^{-1},z,z^{-2},z^{2},\ldots ,z^{-k},z^{k},\ldots \rbrace\) with respect to 〈, L yields the even degree and odd degree orthonormal Laurent polynomials (OLPs) \(\lbrace \phi_{m}(z)\rbrace_{m=0}^{\infty}\) : φ 2n (z)=∑ n k=−n ξ (2n) k z k, ξ (2n) n >0, and φ 2n+1(z)=∑ n k=−n−1 ξ (2n+1) k z k, ξ (2n+1)n−1 >0. Associated with the even degree and odd degree OLPs are the following two pairs of recurrence relations: z φ 2n (z)=c 2n φ 2n−2(z)+b 2n φ 2n−1(z)+a 2n φ 2n (z)+b 2n+1 φ 2n+1(z)+c 2n+2 φ 2n+2(z) and z φ 2n+1(z)=b 2n+1 φ 2n (z)+a 2n+1 φ 2n+1(z)+b 2n+2 φ 2n+2(z), where c 0 =b 0 =0, and c 2k >0, k∈ℕ, and z −1 φ 2n+1(z)=γ 2n+1 φ 2n−1(z)+β 2n+1 φ 2n (z)+α 2n+1 φ 2n+1(z)+β 2n+2 φ 2n+2(z)+γ 2n+3 φ 2n+3(z) and z −1 φ 2n (z)=β 2n φ 2n−1(z)+α 2n φ 2n (z)+β 2n+1 φ 2n+1(z), where β 0 =γ 1 =0, β 1 >0, and γ 2l+1 >0, l∈ℕ. Asymptotics in the double-scaling limit N,n→∞ such that N/n=1+o(1) of the coefficients of these two pairs of recurrence relations, Hankel determinant ratios associated with the real-valued, bi-infinite strong moment sequence \(\lbrace c_{k}=\int_{\mathbb{R}}s^{k}\exp (-{N}V(s))\mathop {d}s\rbrace_{k\in \mathbb{Z}}\) , and the products of the (real) roots of the OLPs are obtained by formulating the even degree and odd degree OLP problems as matrix Riemann-Hilbert problems on ℝ, and then extracting the large-n behaviours by applying the non-linear steepest-descent method introduced in (Ann. Math. 137(2):295–368, [1993]) and further developed in (Commun. Pure Appl. Math. 48(3):277–337, [1995]) and (Int. Math. Res. Not. 6:285–299, [1997]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results. Int. Math. Res. Not. 2003(15), 821–858 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bultheel, A., González-Vera, P., Hendriksen, E., Njåstad, O.: Orthogonal Rational Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Bultheel, A., González-Vera, P., Hendriksen, E., Njåstad, O.: Quadrature and orthogonal rational functions. J. Comput. Appl. Math. 127(1–2), 67–91 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Claeys, T., Kuijlaars, A.B.J., Vanlessen, M.: Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math. (2007, to appear)

  7. Cochran, L., Cooper, S.C.: Orthogonal Laurent polynomials on the real line. In: Cooper, S.C., Thron, W.J. (eds.) Continued Fractions and Orthogonal Functions: Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 154, pp. 47–100. Dekker, New York (1994)

    Google Scholar 

  8. Coussement, J., Van Assche, W.: An extension of the Toda lattice: a direct and inverse spectral transform connected with orthogonal rational functions. Inverse Probl. 20(1), 297–318 (2004)

    Article  MATH  Google Scholar 

  9. Coussement, J., Van Assche, W.: A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients. J. Phys. A: Math. Gen. 38(15), 3337–3366 (2005)

    Article  MATH  Google Scholar 

  10. Coussement, J., Kuijlaars, A.B.J., Van Assche, W.: Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials. Inverse Probl. 18(3), 923–942 (2002)

    Article  MATH  Google Scholar 

  11. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  12. Deift, P., Gioev, D.: Universality in random matrix theory for orthogonal and symplectic ensembles. IMRP Int. Math. Res. Pap. 2007, 1–116 (2007) Art. ID rpm004

    Google Scholar 

  13. Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60(6), 867–910 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  15. Deift, P., Zhou, X.: Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48(3), 277–337 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Deift, P., Zhou, X.: Perturbation theory for infinite-dimensional integrable systems on the line. A case study. Acta Math. 188(2), 163–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Deift, P., Zhou, X.: A priori L p-estimates for solutions of Riemann-Hilbert problems. Int. Math. Res. Not. 2002(40), 2121–2154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deift, P., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure Appl. Math. 56(8), 1029–1077 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Deift, P., Venakides, S., Zhou, X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Int. Math. Res. 1997(6), 285–299 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Deift, P.A., Its, A.R., Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. 146(1), 149–235 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R.: New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95(3), 388–475 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Djrbashian, M.M.: A survey on the theory of orthogonal systems and some open problems. In: Nevai, P. (ed.) Orthogonal Polynomials. Theory and Practice. NATO Advanced Study Institutes Series. Series C, Mathematical and Physical Sciences, vol. 294, pp. 135–146. Kluwer Academic, Dordrecht (1990)

    Google Scholar 

  25. Ercolani, N.M., McLaughlin, K.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 2003(14), 755–820 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Farkas, H.M., Kra, I.: Riemann Surfaces, 2nd edn. Graduate Texts in Mathematics, vol. 71. Springer, New York (1992)

    MATH  Google Scholar 

  27. Fokas, A.S., Its, A.R., Kitaev, A.V.: Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142(2), 313–344 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gesztesy, F., Zinchenko, M.: Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Theory 139(1–2), 172–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gesztesy, F., Zinchenko, M.: A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. Lond. Math. Soc. (2) 74(3), 757–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. González-Vera, P., Njåstad, O.: Convergence of two-point Padé approximants to series of Stieltjes. J. Comput. Appl. Math. 32(1–2), 97–105 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hamburger, H.: Über eine Erweiterung des Stieltjesschen Momentproblems, Part I. Math. Ann. 81, 235–319 (1920) (in German)

    Article  MathSciNet  Google Scholar 

  33. Hamburger, H.: Über eine Erweiterung des Stieltjesschen Momentproblems, Part II. Math. Ann. 82, 120–164 (1921) (in German)

    Article  Google Scholar 

  34. Hamburger, H.: Über eine Erweiterung des Stieltjesschen Momentproblems, Part III. Math. Ann. 82, 168–187 (1921) (in German)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hendriksen, E.: The strong Hamburger moment problem and self-adjoint operators in Hilbert space. J. Comput. Appl. Math. 19(1), 79–88 (1987)

    MATH  MathSciNet  Google Scholar 

  36. Hendriksen, E., Nijhuis, C.: Laurent-Jacobi matrices and the strong Hamburger moment problem. Acta Appl. Math. 61(1–3), 119–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hendriksen, E., van Rossum, H.: Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48(1), 17–36 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Ismail, M.E.H., Masson, D.R.: Generalized orthogonality and continued fractions. J. Approx. Theory 83(1), 1–40 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Jones, W.B., Njåstad, O.: Orthogonal Laurent polynomials and strong moment theory: a survey. J. Comput. Appl. Math. 105(1–2), 51–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jones, W.B., Thron, W.J.: Survey of continued fractions methods of solving moment problems and related topics. In: Jones, W.B., Thron, W.J., Waadeland, H. (eds.) Analytic Theory of Continued Fractions. Lecture Notes in Mathematics, vol. 932, pp. 4–37. Springer, Berlin (1982)

    Chapter  Google Scholar 

  42. Jones, W.B., Thron, W.J., Waadeland, H.: A strong Stieltjes moment problem. Trans. Am. Math. Soc. 261(2), 503–528 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  43. Jones, W.B., Thron, W.J., Njåstad, O.: Orthogonal Laurent polynomials and the strong Hamburger moment problem. J. Math. Anal. Appl. 98(2), 528–554 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematical Studies, vol. 154. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  45. Killip, R., Nenciu, I.: CMV: the unitary analogue of Jacobi matrices. Commun. Pure Appl. Math. 60(8), 1148–1188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Kriecherbauer, T., McLaughlin, K.T.-R.: Strong asymptotics of polynomials orthogonal with respect to Freud weights. Int. Math. Res. 6, 299–333 (1999)

    Article  MathSciNet  Google Scholar 

  47. Kuijlaars, A.B.J., McLaughlin, K.T.-R.: Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. Commun. Pure Appl. Math. 53(6), 736–785 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kuijlaars, A.B.J., McLaughlin, K.T.-R., Van Assche, W., Vanlessen, M.: The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1]. Adv. Math. 188(2), 337–398 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kuijlaars, A.B.J., Van Assche, W., Wielonsky, F.: Quadratic Hermite-Padé approximation to the exponential function: a Riemann-Hilbert approach. Constr. Approx. 21(3), 351–412 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lyng, G., Miller, P.D.: The N-soliton of the focusing nonlinear Schrödinger equation for N large. Commun. Pure Appl. Math. 60(7), 951–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. McLaughlin, K.T.-R., Miller, P.D.: The \(\overline{\partial}\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. IMRP Int. Math. Res. Pap. 2006, 1–77 (2006) Art ID 48673

    MathSciNet  Google Scholar 

  52. McLaughlin, K.T.-R., Vartanian, A.H., Zhou, X.: Asymptotics of Laurent polynomials of even degree orthogonal with respect to varying exponential weights. IMRP Int. Math. Res. Pap. 2006, 1–216 (2006) Art. ID 62815

    MathSciNet  Google Scholar 

  53. McLaughlin, K.T.-R., Vartanian, A.H., Zhou, X.: Asymptotics of Laurent polynomials of odd degree orthogonal with respect to varying exponential weights. Constr. Approx. 27(2), 149–202 (2008) (arXiv:math.CA/0601595 v1)

    Article  MathSciNet  MATH  Google Scholar 

  54. Miller, P.D.: Asymptotics of semiclassical soliton ensembles: rigorous justification of the WKB approximation. Int. Math. Res. Not. 2002(8), 383–454 (2002)

    Article  MATH  Google Scholar 

  55. Nenciu, I.: CMV matrices in random matrix theory and integrable systems: a survey. J. Phys. A: Math. Gen. 39(28), 8811–8822 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Njåstad, O.: A modified Schur algorithm and an extended Hamburger moment problem. Trans. Am. Math. Soc. 327(1), 283–311 (1991)

    Article  MATH  Google Scholar 

  57. Njåstad, O.: Solutions of the strong Stieltjes moment problem. Methods Appl. Anal. 2(3), 320–347 (1995)

    MATH  MathSciNet  Google Scholar 

  58. Njåstad, O.: Extremal solutions of the strong Stieltjes moment problem. J. Comput. Appl. Math. 65(1–3), 309–318 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  59. Njåstad, O.: Solutions of the strong Hamburger moment problem. J. Math. Anal. Appl. 197(1), 227–248 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  60. Njåstad, O., Thron, W.J.: Unique solvability of the strong Hamburger moment problem. J. Aust. Math. Soc. Ser. A 40(1), 5–19 (1986)

    Article  MATH  Google Scholar 

  61. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. American Mathematical Society Surveys, vol. II. AMS, New York (1943)

    MATH  Google Scholar 

  62. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

    MATH  Google Scholar 

  63. Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208(1), 120–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  64. Springer, G.: Introduction to Riemann Surfaces, 2nd edn. Chelsea, New York (1981)

    MATH  Google Scholar 

  65. Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac. Sci. Univ. Toulouse 8, J1–J122 (1894)

    MathSciNet  Google Scholar 

  66. Stieltjes, T.J.: Ann. Fac. Sci. Univ. Toulouse 9, A1–A47 (1895) (in French)

    MathSciNet  Google Scholar 

  67. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. 23. AMS, Providence (1974)

    Google Scholar 

  68. Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. Constr. Approx. 25(2), 125–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Zhedanov, A.: The “classical” Laurent biorthogonal polynomials. J. Comput. Appl. Math. 98(1), 121–147 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  70. Zhedanov, A.: Biorthogonal rational functions and the generalized eigenvalue problem. J. Approx. Theory 101(2), 303–329 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  71. Zhou, X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42(7), 895–938 (1989)

    Article  MATH  Google Scholar 

  72. Zhou, X.: Inverse scattering transform for systems with rational spectral dependence. J. Differ. Equ. 115(2), 277–303 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Vartanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, K.TR., Vartanian, A.H. & Zhou, X. Asymptotics of Recurrence Relation Coefficients, Hankel Determinant Ratios, and Root Products Associated with Laurent Polynomials Orthogonal with Respect to Varying Exponential Weights. Acta Appl Math 100, 39–104 (2008). https://doi.org/10.1007/s10440-007-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9176-0

Keywords

Mathematics Subject Classification (2000)

Navigation