Skip to main content
Log in

Affine Systems: Asymptotics at Infinity for Fractal Measures

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study measures on ℝd which are induced by a class of infinite and recursive iterations in symbolic dynamics. Beginning with a finite set of data, we analyze prescribed recursive iteration systems, each involving subdivisions. The construction includes measures arising from affine and contractive iterated function systems with and without overlap (IFSs), i.e., limit measures μ induced by a finite family of affine mappings in ℝd (the focus of our paper), as well as equilibrium measures in complex dynamics.

By a systematic analysis of the Fourier transform of the measure μ at hand (frequency domain), we identify asymptotic laws, spectral types, dichotomy, and chaos laws. In particular we show that the cases when μ is singular carry a gradation, ranging from Cantor-like fractal measures to measures exhibiting chaos, i.e., a situation when small changes in the initial data produce large fluctuations in the outcome, or rather, the iteration limit (in this case the measures). Our method depends on asymptotic estimates on the Fourier transform of μ for paths at infinity in ℝd. We show how properties of μ depend on perturbations of the initial data, e.g., variations in a prescribed finite set of affine mappings in ℝd, in parameters of a rational function in one complex variable (Julia sets and equilibrium measures), or in the entries of a given infinite positive definite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, S., Scheicher, K.: From number systems to shift radix systems. Nihonkai Math. J. 16(2), 95–106 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Albeverio, S., Cebulla, C.: Müntz formula and zero free regions for the Riemann zeta function. Bull. Sci. Math. 131(1), 12–38 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albeverio, S., Gontcharenko, Y., Pratsiovytyi, M., Torbin, G.: Jessen–Wintner type random variables and fractional properties of their distributions. Math. Nachr. 279(15), 1619–1633 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beardon, A.F.: Iteration of Rational Functions. Complex Analytic Dynamical Systems. Graduate Texts in Mathematics, vol. 132. Springer, New York (1991)

    MATH  Google Scholar 

  5. Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of the Cuntz algebra. Mem. Am. Math. Soc. 139(663), x+89 (1999)

    MathSciNet  Google Scholar 

  6. Brolin, H.: Invariant sets under iteration of rational functions. Arkiv Mat. 6, 103–144 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 45. Cambridge University Press, New York (1957)

    MATH  Google Scholar 

  8. Curry, E.: Radix representations, self-affine tiles, and multivariable wavelets. Proc. Am. Math. Soc. 134(8), 2411–2418 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dufresnoy, J., Pisot, C.: Etude de certaines fonctions méromorphes bornées sur le cercle unité. Application à un ensemble fermé d’entiers algébriques. Ann. Sci. Ecole Norm. Sup. (3) 72, 69–92 (1955)

    MATH  MathSciNet  Google Scholar 

  10. Dutkay, D.E., Jorgensen, P.E.T.: Hilbert spaces built on a similarity and on dynamical renormalization. J. Math. Phys. 47(5), 20 (2006) 053504

    Article  MathSciNet  Google Scholar 

  11. Dutkay, D.E., Jorgensen, P.E.T.: Methods from multiscale theory and wavelets applied to nonlinear dynamics. In: Wavelets, Multiscale Systems and Hypercomplex Analysis. Operator Theory: Advances and Application, vol. 167, pp. 87–126. Birkhäuser, Basel (2006)

    Chapter  Google Scholar 

  12. Dutkay, D.E., Jorgensen, P.E.T.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256, 801–823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dutkay, D.E., Jorgensen, P.E.T.: Disintegration of projective measures. Proc. Am. Math. Soc. 135(1), 169–179 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dutkay, D.E., Jorgensen, P.E.T.: Harmonic analysis and dynamics for affine iterated function systems. Houst. J. Math. (to appear)

  15. Erdős, P.: On a family of symmetric Bernoulli convolutions. Am. J. Math. 61, 974–976 (1939)

    Article  Google Scholar 

  16. Federbush, P.: A phase cell approach to Yang–Mills theory. VI. Non-abelian lattice-continuum duality. Ann. Inst. H. Poincaré Phys. Théor. 47(1), 17–23 (1987)

    MathSciNet  Google Scholar 

  17. Federbush, P.: Navier and Stokes meet the wavelet. II. In: Mathematical Quantum Theory. I. Field Theory and Many-Body Theory, Vancouver, BC, 1993, CRM Proceedings & Lecture Notes, vol. 7, pp. 163–169. Am. Math. Soc., Providence (1994)

    Google Scholar 

  18. Folland, G.B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (1984)

    MATH  Google Scholar 

  19. Gabardo, J.-P., Yu, X.: Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles. J. Lond. Math. Soc. (2) 74(1), 184–204 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. He, X.-G., Lau, K.-S: Characterization of tile digit sets with prime determinants. Appl. Comput. Harmon. Anal. 16(3), 159–173 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. He, X.-G., Lau, K.-S., Rao, H.: On the self-affine sets and the scaling functions. In: Wavelet Analysis, Hong Kong, 2001. Series in Analysis, vol. 1, pp. 179–195. World Scientific, River Edge (2002)

    Google Scholar 

  22. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jessen, B., Wintner, A.: Distribution functions and the Riemann zeta function. Trans. Am. Math. Soc. 38(1), 48–88 (1935)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jorgensen, P.E.T.: Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in Mathematics, vol. 234.. Springer, New York (2006)

    MATH  Google Scholar 

  25. Jorgensen, P.E.T., Kornelson, K.A., Shuman, K.L.: Harmonic analysis of iterated function systems with overlap. arXiv:math-ph/0701066 (2007)

  26. Jorgensen, P.E.T., Kornelson, K.A., Shuman, K.L.: Orthogonal exponentials and iterated function systems with overlap. In: Proceedings for Current Trends in Harmonic Analysis and Its Applications—Wavelets and Frames Workshop in Honor of Larry Baggett (2007, to appear)

  27. Jorgensen, P.E.T., Pedersen, S.: Dense analytic subspaces in fractal L 2-spaces. J. Anal. Math. 75, 185–228 (1998)

    MathSciNet  Google Scholar 

  28. Kahane, J.-P.: Some Random Series of Functions, Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  29. Kenyon, R., Li, J., Strichartz, R.S., Wang, Y.: Geometry of self-affine tiles. II. Indiana Univ. Math. J. 48(1), 25–42 (1999)

    MATH  MathSciNet  Google Scholar 

  30. Knuth, D.E.: The Art of Computer Programming, vol. 1. Fundamental Algorithms. Addison-Wesley Series in Computer Science and Information Processing, 2nd edn. Addison-Wesley, Reading (1975)

    Google Scholar 

  31. Koch, H., Wittwer, P.: Computing bounds on critical indices. In: Nonlinear Evolution and Chaotic Phenomena, Noto, 1987. NATO Advanced Science Institute Series B: Physics, vol. 176, pp. 269–277. Plenum, New York (1988)

    Google Scholar 

  32. Koch, H., Wittwer, P.: On the renormalization group transformation for scalar hierarchical models. Commun. Math. Phys. 138(3), 537–568 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lagarias, J.C., Wang, Y.: Haar bases for L 2(R n) and algebraic number theory. J. Number Theory 57(1), 181–197 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lagarias, J.C., Wang, Y.: Integral self-affine tiles in R n. I. Standard and nonstandard digit sets. J. Lond. Math. Soc. (2) 54(1), 161–179 (1996)

    MATH  MathSciNet  Google Scholar 

  35. Lagarias, J.C., Wang, Y.: Self-affine tiles in R n. Adv. Math. 121(1), 21–49 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lagarias, J.C., Wang, Y.: Integral self-affine tiles in R n. II. Lattice tilings. J. Fourier Anal. Appl. 3(1), 83–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lagarias, J.C., Wang, Y.: Orthogonality criteria for compactly supported refinable functions and refinable function vectors. J. Fourier Anal. Appl. 6(2), 153–170 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lau, K.-S., Ngai, S.-M., Rao, H.: Iterated function systems with overlaps and self-similar measures. J. Lond. Math. Soc. (2) 63(1), 99–116 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Li, J.-L.: Digit sets of integral self-affine tiles with prime determinant. Studia Math. 177(2), 183–194 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, J.-L.: Spectral self-affine measures in ℝN. Proc. Edinb. Math. Soc. (2) 50(1), 197–215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)

    MATH  MathSciNet  Google Scholar 

  42. Odlyzko, A.M.: Nonnegative digit sets in positional number systems. Proc. Lond. Math. Soc. (3) 37(2), 213–229 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pollard, H.: The Theory of Algebraic Numbers. Carus Monograph Series, vol. 9, 2nd edn. American Mathematical Association, Buffalo (1975)

    Google Scholar 

  44. Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions. In: Fractal Geometry and Stochastics II, Greifswald/Koserow, 1998. Progress in Probabability, vol. 46, pp. 39–65. Birkhäuser, Basel (2000)

    Google Scholar 

  45. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  46. Safer, T.: Radix representations of algebraic number fields and finite automata. In: STACS 98, Paris, 1998. Lecture Notes in Computer Science, vol. 1373, pp. 356–365. Springer, Berlin (1998)

    Chapter  Google Scholar 

  47. Siegel, C.L.: Algebraic integers whose conjugates lie in the unit circle. Duke Math. J. 11, 597–602 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  48. Solomyak, B.: On the random series ∑±λ n (an Erdős problem). Ann. Math. (2) 142(3), 611–625 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Terr, D., Weisstein, E.W.: Pisot number. http://mathworld.wolfram.com/PisotNumber.html

  50. Zhang, T., Liu, J., Zhuang, Z.: Multi-dimensional piece-wise self-affine fractal interpolation model in tensor form. Adv. Complex Syst. 9(3), 287–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorgensen, P.E.T., Kornelson, K.A. & Shuman, K.L. Affine Systems: Asymptotics at Infinity for Fractal Measures. Acta Appl Math 98, 181–222 (2007). https://doi.org/10.1007/s10440-007-9156-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-007-9156-4

Keywords

Mathematics Subject Classification (2000)

Navigation