Skip to main content
Log in

Spatiotemporal Characterization of Microstructure Morphology, Mechanical Properties and Bone Remodeling of Rat Tibia Under Uniaxial Compressive Overload Loading

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone tissue is subjected to increased mechanical stress during high-intensity work. Inadequate bone remodeling reparability can result in the continuous accumulation of microdamage, leading to stress fractures. The aim of this work was to investigate the characteristics and repair mechanisms of tibial microdamage under several degrees of overload. Also, we aimed at better understanding the effects of overload on the multi-scale structure and mechanical properties of bone. Sixty 5-month female rats were divided into three groups with different time points. Micro-CT was used to evaluate the three-dimensional microstructure, and three-point bending, quasi-static fracture toughness and creep mechanical test were carried out to evaluate the mechanical properties. SEM was used to observe the morphological characteristics of fracture surfaces. Section staining was used to count the microdamage parameters and numbers of osteoblasts and osteoclasts. The microarchitectures of cancellous and cortical bones in the three overload groups showed different degrees of damage. Overload led to a messy crystal structure of cortical bone, with slender microcracks mixed in, and a large number of broken fibers of cancellous bone. The properties associated with the elastic plasticity, fracture toughness, and viscoelasticity of cortical bone reduced in three groups, with that corresponding to day 30 presenting the highest damage. The accumulation of microdamage mainly occurred in the first 14 days, that is, the crack density peaked on day 14. Peak-targeted bone remodeling of cortical and cancellous bones occurred mainly between days 14 and 30. The influence of overload mechanical environment on bone quality at different time points was deeply investigated, which is of great significance for the etiology and treatment of stress fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chapurlat, R. D., and P. D. Delmas. Bone microdamage: a clinical perspective. Osteoporos. Int. 20(8):1299–1308, 2009. https://doi.org/10.1007/s00198-009-0899-9.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, T. C., S. Mohsin, D. Taylor, R. Parkesh, T. Gunnlaugsson, F. J. O’Brien, M. Giehl, and W. Gowin. Detecting microdamage in bone. J. Anat. 203(2):161–172, 2003. https://doi.org/10.1046/j.1469-7580.2003.00211.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diab, T., and D. Vashishth. Effects of damage morphology on cortical bone fragility. Bone. 37(1):96–102, 2005. https://doi.org/10.1016/j.bone.2005.03.014.

    Article  CAS  PubMed  Google Scholar 

  4. Burr, D. B., M. R. Forwood, D. P. Fyhrie, R. B. Martin, M. B. Schaffler, and C. H. Turner. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12(1):6–15, 1997. https://doi.org/10.1359/jbmr.1997.12.1.6.

    Article  CAS  PubMed  Google Scholar 

  5. Hoenig, T., K. E. Ackerman, B. R. Beck, M. L. Bouxsein, D. B. Burr, K. Hollander, K. L. Popp, T. Rolvien, A. S. Tenforde, and S. J. Warden. Bone stress injuries. Nat. Rev. Dis. Primers. 8(1):26, 2022. https://doi.org/10.1038/s41572-022-00352-y.

    Article  PubMed  Google Scholar 

  6. Yan, C. X., H. Song, J. Pfister, T. L. Andersen, S. J. Warden, R. Bhargave, and M. E. Kersh. Effect of fatigue loading and rest on impact strength of rat ulna. J. Biomech. 123:110449, 2021. https://doi.org/10.1016/j.jbiomech.2021.110449.

    Article  PubMed  Google Scholar 

  7. Sturznickel, J., N. Hinz, M. M. Delsmann, T. Hoenig, and T. Rolvien. Impaired bone microarchitecture distal radial and tibial reference locations is not related to injury site in athletes with bone stress injury. Am. J. Sport Med. 50(12):3381–3389, 2022. https://doi.org/10.1177/03635465221120385.

    Article  Google Scholar 

  8. Nuti, R., M. L. Brandi, G. Checchia, O. Di Munno, L. Dominguez, P. Falaschi, C. E. Fiore, G. Iolascon, S. Maggi, M. Rossini, G. Sessa, U. Tarantino, A. Toselli, and G. C. Isaia. Guidelines for the management of osteoporosis and fragility fractures. Intern. Emerg. Med. 14(1):85–102, 2019. https://doi.org/10.1007/s11739-018-1874-2.

    Article  PubMed  Google Scholar 

  9. Liu, Z. H., J. Z. Gao, and H. Gong. The adaptive response of rat tibia to different levels of peak strain and durations of experiment. Med. Eng. Phys.102:103785, 2022. https://doi.org/10.1016/j.medengphy.2022.103785.

    Article  PubMed  Google Scholar 

  10. Li, J. W., and H. Gong. Fatigue behavior of cortical bone: a review. Acta Mech. Sin. 37(3):516–526b, 2020. https://doi.org/10.1007/s10409-020-01012-8.

    Article  Google Scholar 

  11. Hao, L., L. Rui-Xin, H. Biao, Z. Bin, H. Bao-Hui, L. Ying-Jie, and Z. Xi-Zhang. Effect of athletic fatigue damage and the associated bone targeted remodeling in the rat ulna. BioMed. Eng. Online. 16:99, 2017. https://doi.org/10.1186/s12938-017-0384-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, X. Y., C. Tang, X. H. Zhang, J. Cai, Z. D. Yan, K. N. Xie, Z. P. Yang, J. Wang, X. E. Guo, E. P. Luo, and D. Jing. Spatiotemporal distribution of linear microcracks and diffuse microdamage following daily bouts of fatigue loading of rat lunae. J. Orthop. Res. 37(10):2112–2121, 2019. https://doi.org/10.1002/jor.24391.

    Article  PubMed  Google Scholar 

  13. Webster, D. J., P. Schneider, S. L. Dallas, and R. Muller. Studying osteocytes within their environment. Bone. 54(2):285–295, 2013. https://doi.org/10.1016/j.bone.2013.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sims, N. A., and T. J. Martin. Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu. Rev. Physiol. 82:507–529, 2020. https://doi.org/10.1146/annurev-physiol-021119-034425.

    Article  CAS  PubMed  Google Scholar 

  15. Jarvinen, T. L. N., P. Kannus, I. Pajamaki, T. Vuohelainen, J. Tuukkanen, A. Jarvinen, and H. Sievanen. Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone. 32(6):642–651, 2003. https://doi.org/10.1016/S8756-3282(03)00100-5.

    Article  CAS  PubMed  Google Scholar 

  16. Takano-Yamamoto, T., and S. Nomura. Molecular events caused by mechanical stress in bone. Matrix Biol. 19(2):91–96, 2000. https://doi.org/10.1016/S0945-053X(00)00050-0.

    Article  PubMed  Google Scholar 

  17. Meng, X. J., C. A. Y. Qu, D. H. Fu, and C. A. Qu. Effects of fatigue damage on the microscopic modulus of cortical bone using nanoindentation. Materials. 14(12):3252–3263, 2021. https://doi.org/10.3390/ma14123252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Unal, M., S. Uppuganti, S. Timur, A. Mahadevan-Jansen, O. Akkus, and J. S. Nyman. Assessing matrix quality by Raman spectroscopy helps predict fracture toughness of human cortical bone. Sci. Rep. 9:7195, 1981. https://doi.org/10.1038/s41598-019-43542-7.

    Article  CAS  Google Scholar 

  19. Galley, S. A., D. J. Michalek, and S. W. Donahue. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone. J. Biomech. 39(11):2026–2033, 2006. https://doi.org/10.1016/j.jbiomech.2005.06.008.

    Article  PubMed  Google Scholar 

  20. Karali, A., E. D. Ara, J. Zekonyte, A. P. Kao, G. Blun, and G. Tozzi. Effect of radiation-induced damage of trabecular bone tissue evaluated using indentation and digital volume correlation. J. Mech. Behav. Biomed.138:105636, 2023. https://doi.org/10.1016/j.jmbbm.2022.105636.

    Article  Google Scholar 

  21. Burr, D. B., C. H. Turner, P. Naick, M. R. Forwood, W. Ambrosius, M. S. Hasan, and R. Pidaparti. Dose microdamage accumulation affect the mechanical properties of bone. J. Biomech. 31(4):337–345, 1998. https://doi.org/10.1016/S0021-9290(98)00016-5.

    Article  CAS  PubMed  Google Scholar 

  22. Patel, T. K., M. D. Brodt, and M. J. Silva. Experimental and finite element analysis of strain induced by axial tibial compression in young-adult and old female C57Bl/6 mice. J. Biomech. 47(2):451–457, 2014. https://doi.org/10.1016/j.jbiomech.2013.10.052.

    Article  PubMed  Google Scholar 

  23. Willett, T. L., S. Sutty, A. Gaspar, N. Avery, and M. Grynpas. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 52(2):611–622, 2013. https://doi.org/10.1016/j.bone.2012.11.014.

    Article  PubMed  Google Scholar 

  24. Viguet-Carrin, S., D. Farlay, Y. Bala, F. Munoz, M. L. Bouxsein, and P. D. Delmas. An in vitro model to test the contribution of advanced glycation end products to bone biomechanical properties. Bone. 42(1):139–149, 2008. https://doi.org/10.1016/j.bone.2007.08.046.

    Article  CAS  PubMed  Google Scholar 

  25. Tang, S. Y., U. Zeenath, and D. Vashishth. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 40(4):1144–1151, 2007. https://doi.org/10.1016/j.bone.2006.12.056.

    Article  CAS  PubMed  Google Scholar 

  26. Dorrington, K. L. The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol. 34:289–314, 1980.

    CAS  PubMed  Google Scholar 

  27. Ritchiie, R. O., K. J. Koester, S. Ionova, W. Yao, N. E. Lane, and J. W. Ager. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 43(5):798–812, 2008. https://doi.org/10.1016/j.bone.2008.04.027.

    Article  Google Scholar 

  28. Takahashi, Y. Evaluation of leak-before-break assessment methodology for pipes with a circumferential through-wall crack. Part Ι: stress intensity factor and limit load solutions. Int. J. Press. Vessels Pip. 79(6):385–392, 2002. https://doi.org/10.1016/S0308-0161(02)00036-4.

    Article  Google Scholar 

  29. Standard test method for measurement of fracture toughness. ASTM, E1820-17.

  30. Hansen, L. J., S. L. Bloch, T. Frisch, and M. S. Sorensen. Distribution of microcrack surface density in the human otic capsule. Acta Oto-Laryngol. 141(6):567–571, 2021. https://doi.org/10.1080/00016489.2021.1905875.

    Article  CAS  Google Scholar 

  31. O’Brien, F. J., D. Taylor, and T. C. Lee. Microcrack accumulation at different intervals during fatigue testing of compact bone. J. Biomech. 36(7):973–980, 2003. https://doi.org/10.1016/S0021-9290(03)00066-6.

    Article  PubMed  Google Scholar 

  32. Chapurlat, R. D., M. Arlot, B. Burt-Pichat, P. Chavassieux, J. P. Roux, N. Portero-Muzy, and P. D. Delmas. Microcrack frequency and bone remodeling in postmenopausal osteoporotic woman on long-term bisphosphonates: a bone biopsy study. J. Bone Miner. Res. 22(10):1502–1509, 2007. https://doi.org/10.1359/JBMR.070609.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, C. G., J. X. Zhu, J. L. Jia, Z. Y. Guan, T. T. Sun, W. Zhang, W. Q. Yuan, H. Wang, H. J. Leng, and C. L. Song. Effect of single versus multiple fractures on systemic bone loss in mice. J. Bone Miner. Res. 36(3):567–578, 2020. https://doi.org/10.1002/jbmr.4211.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, B. N., Q. Zhang, X. Y. Lin, J. Hu, D. C. Zhao, Y. Jiang, X. P. Xing, and M. Li. The roles of sclerostin and irisin on bone and muscle of orchiectomized rats. BMC Musculoskel. Dis. 23(1):1049, 2023. https://doi.org/10.1186/s12891-022-05982-7.

    Article  CAS  Google Scholar 

  35. Chalhoub, D., P. M. Cawthon, K. E. Ensrud, M. L. Stefanick, D. M. Kado, R. Boudreau, S. Greenspan, A. B. Newman, J. Zmuda, E. S. Orwoll, and J. A. Cauley. Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. J. Am. Geriatr. Soc. 63(9):1733–1740, 2015. https://doi.org/10.1111/jgs.13605.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wright, C. S., E. R. Hill, P. C. R. Fernandez, W. R. Thompson, M. A. Gallant, W. W. Campbell, and R. P. Main. Effects of dietary protein source and quantity on bone morphology and body composition following a high-protein weight-loss diet in a rat model for postmenopausal obesity. Nutrients. 14(11):2262, 2022. https://doi.org/10.3390/nu14112262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X., D. Kim, K. L. Tucker, M. G. Weisskopf, D. Sparrow, H. Hu, and S. K. Park. Effect of dietary sodium and potassium intake on the mobilization of bone lead among middle-aged and older men: the veterans affairs normative aging study. Nutrients. 11(11):2750, 2019. https://doi.org/10.3390/nu11112750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hildebrand, T. O. R., and P. Ruegsegger. Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1(1):15–23, 1997. https://doi.org/10.1080/01495739708936692.

    Article  Google Scholar 

  39. Yu, W., L. L. Zhong, and L. T. Yao. Bone marrow adapogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. J. Clin. Investig. 131(2):e140214, 2021. https://doi.org/10.1172/JCI140214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, C., and T. S. Kato. Dynamics of bone turnover markers in patients with heart failure and following haemodynamic improvement through ventricular assist device implantation. Eur. J. Heart Fail. 14(12):1356–1365, 2012. https://doi.org/10.1093/eurjhf/hfs138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Napoli, N., M. Chandran, D. D. Pierroz, B. Abrahamsen, A. V. Schwartz, and S. L. Ferrari. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13(4):208–219, 2017. https://doi.org/10.1038/nrendo.2016.153.

    Article  CAS  PubMed  Google Scholar 

  42. Vashishth, D., G. J. Gibson, J. I. Khoury, M. B. Schaffler, J. Kimura, and D. P. Fyhrie. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 28(2):195–201, 2001. https://doi.org/10.1016/S8756-3282(00)00434-8.

    Article  CAS  PubMed  Google Scholar 

  43. Vashishth, D. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J. Biomech. 37(6):943–946, 2004. https://doi.org/10.1016/j.jbiomech.2003.11.003.

    Article  PubMed  Google Scholar 

  44. Zimmermann, E. A., B. Gludovatz, E. Schaible, B. Busse, and R. O. Ritchie. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 35(21):5472–5481, 2014. https://doi.org/10.1016/j.biomaterials.2014.03.066.

    Article  CAS  PubMed  Google Scholar 

  45. Morais, G. P., A. da Rocha, A. P. Pinto, L. D. Oliveria, L. G. de Vicente, G. N. Ferreira, E. C. de Freitas, and A. S. R. da Silva. Uphill running excessive training increases gastrocnemius glycogen content in C57BL/6 mice. Physiol. Res. 67(1):107–115, 2018. https://doi.org/10.33549/physiolres.933614.

    Article  CAS  PubMed  Google Scholar 

  46. Yahyazadehfar, M., and D. Arola. The role of organic proteins on the crack growth resistance of human enamel. Acta Biomater. 19:33–35, 2015. https://doi.org/10.1016/j.actbio.2015.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anton, S. D., M. G. Perri, J. Riley, W. F. Kanasky, J. R. Rodrigue, S. F. Sears, and A. D. Martin. Differential predictors of adherence in exercise programs with moderate versus higher levels of intensity and frequency. J. Sport Exerc. Psychol. 27(2):171–187, 2005. https://doi.org/10.1123/jsep.27.2.171.

    Article  Google Scholar 

  48. Bentolila, V., T. M. Boyce, D. P. Fyhrie, R. Drumb, T. M. Skerry, and M. B. Schaffler. Intracortical remodeling in adult rat long bones after fatigue loading. Bone. 23(3):275–281, 1998. https://doi.org/10.1016/S8756-3282(98)00104-5.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, X. H., X. Y. Liu, Z. D. Yan, J. Cai, F. Kang, S. Shan, P. Wang, M. M. Zhai, X. E. Guo, E. P. Luo, and D. Jing. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading. Bone. 108:156–164, 2018. https://doi.org/10.1016/j.bone.2018.01.011.

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 12272029).

Author information

Authors and Affiliations

Authors

Contributions

He Gong: conceptualization, resources, supervision, funding acquisition, writing-review & editing. Zhehao Liu: experiment, writing-original draft. Jiazi Gao: supervision, writing-review & editing.

Corresponding author

Correspondence to He Gong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Gao, J. & Gong, H. Spatiotemporal Characterization of Microstructure Morphology, Mechanical Properties and Bone Remodeling of Rat Tibia Under Uniaxial Compressive Overload Loading. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03531-y

Keywords

Navigation