Skip to main content
Log in

Biomechanics of the Femoral Head Cartilage and Subchondral Trabecular Bone in Osteoporotic and Osteopenic Fractures

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aimed to investigate the relationship between the micro structural properties of the subchondral trabecular bone (STB) and the macro mechanical properties of the articular cartilage (AC) in patients with osteoporotic (OP) and osteopenic (OPE) fractures. Sixteen femoral head samples (OP;OPE, n = 8 each) were obtained from female patients who underwent hip hemiarthroplasty. STB and AC specimens were harvested from those heads. Bone specimens were scanned using µ-CT to determine the micro structural properties. In-situ nondestructive compressive tests were performed for the cartilages to obtain elastic properties. The finite element technique was implemented on STB models created from µ-CT data to compute apparent elastic modulus. In addition, dynamic cyclic destructive tests were performed on STB and AC specimens to assess failure cycles. The results demonstrated that STB specimens in OPE group have more interconnected structure and higher cyclic dynamic strength than those in OP group. Furthermore, bone mineral density, failure cycle, and trabecular number of STB were positively correlated with the cartilage failure cycle, which indicates that STB alteration may affect the macroscopic mechanical properties of AC. The findings suggest that STB loss correlates with a decrease in cartilage strength and that improving of bone quality may prevent cartilage weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arnold, M. P., A. U. Daniels, S. Ronken, et al. Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics. Cartilage. 2(4):374–383, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bellido, M., L. Lugo, J. A. Roman-Blas, S. Castañeda, E. Calvo, R. Largo, and G. Herrero-Beaumont. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr. Cartil. 19(10):1228–1236, 2011.

    CAS  Google Scholar 

  3. Bellido, M., L. Lugo, J. A. Roman-Blas, et al. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res. Ther. 12(4):R152, 2010.

    PubMed  PubMed Central  Google Scholar 

  4. Blain, H., P. Chavassieux, N. Portero-Muzy, F. Bonnel, F. Canovas, M. Chammas, P. Maury, and P. D. Delmas. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone. 43(5):862–868, 2008.

    CAS  PubMed  Google Scholar 

  5. Bobinac, D., M. Marinovic, E. Bazdulj, O. Cvijanovic, T. Celic, I. Maric, J. Spanjol, and T. Cicvaric. Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis. Osteoarthr. Cartil. 21(11):1724–1730, 2013.

    CAS  Google Scholar 

  6. Bolcos, P. O., M. E. Mononen, A. Mohammadi, M. Ebrahimi, et al. Comparison between kinetic and kinetic-kinematic driven knee joint finite element models. Sci. Rep. 8:17351, 2018.

    PubMed  PubMed Central  Google Scholar 

  7. Calvo, E., I. Palacios, E. Delgado, O. Sánchez-Pernaute, R. Largo, J. Egido, and G. Herrero-Beaumont. Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthr. Cartil. 12(11):878–886, 2004.

    CAS  Google Scholar 

  8. Calvo, E., S. Castañeda, R. Largo, M. E. Fernández-Valle, F. Rodríguez-Salvanés, and G. Herrero-Beaumont. Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthr. Cartil. 15(1):69–77, 2007.

    CAS  Google Scholar 

  9. Cao, Z., C. Dou, and S. Dong. Scaffolding biomaterials for cartilage regeneration. J. Nanomater. 2014. https://doi.org/10.1155/2014/489128.

    Article  Google Scholar 

  10. Chen, Y., Y. Hu, Y. E. Yu, et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J. Bone Miner. Res. 33(2):316–327, 2018.

    CAS  PubMed  Google Scholar 

  11. Chiba, K., M. Uetani, Y. Kido, M. Ito, N. Okazaki, K. Taguchi, et al. Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study. Osteopor. Int. 23(2):589–597, 2012.

    CAS  Google Scholar 

  12. Chu, L., Z. He, X. Qu, X. Liu, W. Zhang, S. Zhang, X. Han, M. Yan, Q. Xu, S. Zhang, X. Shang, and Z. Yu. Different subchondral trabecular bone microstructure and biomechanical properties between developmental dysplasia of the hip and primary osteoarthritis. J. Orthop. Transl. 27(22):50–57, 2019.

    Google Scholar 

  13. Ciarelli, T. E., D. P. Fyhrie, M. B. Schaffler, and S. A. Goldstein. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J. Bone Miner. Res. 15(1):32–40, 2000.

    CAS  PubMed  Google Scholar 

  14. Cutcliffe, H. C., K. M. Davis, C. E. Spritzer, et al. The characteristic recovery time as a novel, noninvasive metric for assessing in vivo cartilage mechanical function. Ann. Biomed. Eng. 48:2901–2910, 2020.

    PubMed  PubMed Central  Google Scholar 

  15. Day, J. S., J. C. Van der Linden, R. A. M. Bank, et al. Adaptation of subchondral bone in osteoarthritis. Biorheology. 41:359–368, 2004.

    CAS  PubMed  Google Scholar 

  16. De Moor, L., E. Beyls, and H. Declercq. Scaffold free microtissue formation for enhanced cartilage repair. Ann. Biomed. Eng. 48:298–311, 2020.

    PubMed  Google Scholar 

  17. Démarteau, O., L. Pillet, A. Inaebnit, O. Borens, and T. M. Quinn. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthr. Cartil. 14(6):589–596, 2006.

    Google Scholar 

  18. Ding, M., C. C. Danielsen, and I. Hvid. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Calcif. Tissue Int. 82:77–86, 2008.

    CAS  PubMed  Google Scholar 

  19. Ding, M., C. C. Danielsen, and I. Hvid. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in Guinea pig primary osteoarthrosis. Calcif. Tissue Int. 78(2):113–122, 2006.

    CAS  PubMed  Google Scholar 

  20. Ebrahimi, M., M. J. Turunen, M. A. Finnilä, et al. Structure-function relationships of healthy and osteoarthritic human tibial cartilage: experimental and numerical investigation. Ann. Biomed. Eng. 48:2887–2900, 2020.

    PubMed  PubMed Central  Google Scholar 

  21. Ebrahimi, M., S. Ojanen, A. Mohammadi, et al. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann. Biomed. Eng. 47:953–966, 2019.

    PubMed  PubMed Central  Google Scholar 

  22. Ferizi, U., S. Honig, and G. Chang. Artificial intelligence, osteoporosis and fragility fractures. Curr. Opin. Rheumatol. 31:368–375, 2019.

    PubMed  PubMed Central  Google Scholar 

  23. Ferretti, J. L., G. R. Cointry, R. F. Capozza, and H. M. Frost. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech. Ageing Dev. 124(3):269–279, 2003.

    PubMed  Google Scholar 

  24. Genant, H. K., K. Engelke, and S. Prevrhal. Advanced CT bone imaging in osteoporosis. Rheumatology. 47:iv9–iv16, 2008.

    PubMed  PubMed Central  Google Scholar 

  25. Glowacki, J., and T. Vokes. Osteoporosis and mechanisms of skeletal aging. In: Advances in Geroscience, edited by F. Sierra, and R. Kohanski. Cham: Springer, 2016, pp. 277–307.

    Google Scholar 

  26. Gül, O., O. S. Atik, D. Erdoğan, G. Göktaş, and C. Elmas. Transmission and scanning electron microscopy confirm that bone microstructure is similar in osteopenic and osteoporotic patients. Eklem Hastalik Cerrahisi. 24(3):126–132, 2013.

    PubMed  Google Scholar 

  27. He, Z., L. Chu, X. Liu, X. Han, K. Zhang, M. Yan, X. Li, and Z. Yu. Differences in subchondral trabecular bone microstructure and finite element analysis-based biomechanical properties between osteoporosis and osteoarthritis. J. Orthop. Transl. 2(24):39–45, 2020.

    Google Scholar 

  28. Healey, J. H., V. J. Vigorita, and J. M. Lane. The coexistence and characteristics of osteoarthritis and osteoporosis. J. Bone Joint Surg. 67(4):586–592, 1985.

    CAS  PubMed  Google Scholar 

  29. Keaveny, T. M., B. L. Clarke, F. Cosman, E. S. Orwoll, E. S. Siris, S. Khosla, and M. L. Bouxsein. Biomechanical computed tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos. Int. 31(6):1025–1048, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Keyak, J. H., and Y. Falkinstein. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25(9):781–787, 2003.

    PubMed  Google Scholar 

  31. Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. B. 15(2):143–157, 2009.

    CAS  Google Scholar 

  32. Korhonen, R. K., M. S. Laasanen, J. Töyräs, J. Rieppo, J. Hirvonen, H. J. Helminen, and J. S. Jurvelin. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35(7):903–909, 2002.

    CAS  PubMed  Google Scholar 

  33. Li, B., and R. M. Aspden. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J. Bone Miner. Res. 12(4):641–651, 1997.

    CAS  PubMed  Google Scholar 

  34. Li, B., and R. M. Aspden. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos. Int. 7:450–456, 1997.

    CAS  PubMed  Google Scholar 

  35. Li, G., J. Yin, J. Gao, T. S. Cheng, N. J. Pavlos, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthr. Res. Ther. 15(6):223, 2013.

    CAS  Google Scholar 

  36. Lloyd, A. A., Z. X. Wang, and E. Donnelly. Multiscale contribution of bone tissue material property heterogeneity to trabecular bone mechanical behavior. J. Biomech. Eng. 137:010801, 2015.

    Google Scholar 

  37. Lv, H., L. Zhang, F. Yang, Z. Zhao, Q. Yao, L. Zhang, and P. Tang. Comparison of microstructural and mechanical properties of trabecular in femoral head from osteoporosis patients with and without cartilage lesions: a case-control study. BMC Musculoskelet. Disord. 31(16):72, 2015.

    Google Scholar 

  38. Malgo, F., N. A. Hamdy, S. E. Papapoulos, and N. M. Appelman-Dijkstra. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J. Clin. Endocrinol. Metab. 100(5):2039–2045, 2015.

    CAS  PubMed  Google Scholar 

  39. Mohammadi, A., K. A. H. Myller, P. Tanska, et al. Rapid CT-based estimation of articular cartilage biomechanics in the knee joint without cartilage segmentation. Ann. Biomed. Eng. 48:2965–2975, 2020.

    PubMed  PubMed Central  Google Scholar 

  40. Molino, G., A. Dalpozzi, G. Ciapetti, M. Lorusso, et al. Osteoporosis-related variations of trabecular bone properties of proximal human humeral heads at different scale lengths. J. Mech. Behav. Biomed. Mater. 100:103373, 2019.

    PubMed  Google Scholar 

  41. Mononen, M. E., M. K. Liukkonen, and R. K. Korhonen. Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative. Ann. Biomed. Eng. 47:813–825, 2019.

    PubMed  Google Scholar 

  42. Nippolainen, E., R. Shaikh, V. Virtanen, et al. Near infrared spectroscopy enables differentiation of mechanically and enzymatically induced cartilage injuries. Ann. Biomed. Eng. 48:2343–2353, 2020.

    PubMed  PubMed Central  Google Scholar 

  43. Ozan, F., M. Pekedis, Ş Koyuncu, T. Altay, H. Yıldız, and C. Kayalı. Micro-computed tomography and mechanical evaluation of trabecular bone structure in osteopenic and osteoporotic fractures. J. Orthop. Surg. 25(1):1–6, 2017.

    Google Scholar 

  44. Pasco, J. A., E. Seeman, M. J. Henry, E. N. Merriman, G. C. Nicholson, and M. A. Kotowicz. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 17(9):1404–1409, 2006.

    CAS  PubMed  Google Scholar 

  45. Radin, E. L., H. G. Parker, J. W. Pugh, R. S. Steinberg, I. L. Paul, and R. M. Rose. Response of joints to impact loading-III: relationship between trabecular microfractures and cartilage degeneration. J. Biomech. 6:51–57, 1973.

    CAS  PubMed  Google Scholar 

  46. Shen, Y., Y. H. Zhang, and L. Shen. Postmenopausal women with osteoporosis and osteoarthritis show different microstructural characteristics of trabecular bone in proximal tibia using high-resolution magnetic resonance imaging at 3 tesla. BMC Musculoskelet. Disord. 14(1):136, 2013.

    PubMed  PubMed Central  Google Scholar 

  47. Šimundić, A. M. Measures of diagnostic accuracy: basic definitions. J. Int. Fed. Clin. Chem. Lab. Med. 19(4):203–211, 2009.

    Google Scholar 

  48. Sun, J., and H. Tan. Alginate-based biomaterials for regenerative medicine applications. Materials. 6(4):1285–1309, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, S. S., H. L. Ma, C. L. Liu, C. H. Huang, C. K. Cheng, and H. W. Wei. Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. Clin. Biomech. 23:39–47, 2008.

    Google Scholar 

  50. Tamimi, I., A. R. G. Cortes, J. M. Sánchez-Siles, J. L. Ackerman, D. González-Quevedo, Á. García, F. Yaghoubi, M. N. Abdallah, H. Eimar, A. Alsheghri, M. Laurenti, A. Al-Subaei, E. Guerado, D. García-de-Quevedo, and F. Tamimi. Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis. Bone. 140:115558, 2020.

    CAS  PubMed  Google Scholar 

  51. Vakiel, P., M. Shekarforoush, C. R. Dennison, et al. Mapping stresses on the tibial plateau cartilage in an ovine model using in-vivo gait kinematics. Ann. Biomed. Eng. 49:1288–1297, 2021.

    PubMed  Google Scholar 

  52. Vakiel, P., M. Shekarforoush, C. R. Dennison, et al. Stress measurements on the articular cartilage surface using fiber optic technology and in-vivo gait kinematics. Ann. Biomed. Eng. 48:2836–2845, 2020.

    PubMed  Google Scholar 

  53. von Sarah R. Dynamic stiffness of articular cartilage and potential repair materials, PhD thesis. Universität Basel, 2012.

Download references

Acknowledgments

We are grateful to Ege University Planning and Monitoring Coordination of Organizational Development and Directorate of Library and Documentation for their support in editing and proofreading service of this study

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Pekedis.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekedis, M., Ozan, F. & Yildiz, H. Biomechanics of the Femoral Head Cartilage and Subchondral Trabecular Bone in Osteoporotic and Osteopenic Fractures. Ann Biomed Eng 49, 3388–3400 (2021). https://doi.org/10.1007/s10439-021-02861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02861-5

Keywords

Navigation