Skip to main content
Log in

Effect of Ascending Aortic Curvature on Flow in the Sinus and Neo-sinus Following TAVR: A Patient-Specific Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patient-specific aortic geometry and its influence on the flow in the vicinity of Transcatheter Aortic Valve (TAV) has been highlighted in numerous studies using both in silico and in vitro experiments. However, there has not yet been a detailed Particle Image Velocimetry (PIV) experiment conducted to quantify the relationship between the geometry, flow downstream of TAV, and the flow in the sinus and the neo-sinus. We tested six different patient-specific aorta models with a 26-mm SAPIEN 3 valve (Edwards Lifesciences, Irvine, CA, USA) in a left heart simulator with coronary flow. Velocities in all three cusps and circulation downstream of TAV were computed to evaluate the influence of the ascending aorta curvature on the flow field. The in vitro analysis showed that the patient-specific aortic curvature had positive correlation to the circulation in the ascending aorta (p = 0.036) and circulation had negative correlation to the particle washout time in the cusps (p = 0.011). These results showed that distinct vortical flow patterns in the ascending aorta as the main jet impinges on the aortic wall causes a recirculation region that facilitates the flow back into the sinus and the neo-sinus, thus reducing the risk of flow stagnation and washout time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

THV:

Transcatheter heart valve

TAV:

Transcatheter aortic valve

TAVR:

Transcatheter aortic valve replacement

LCC:

Left coronary cusp

RCC:

Right coronary cusp

NCC:

Non-coronary cusp

PIV:

Particle image velocimetry

STJ:

Sino tubular junction

TVPG:

Transvalvular pressure gradient

LCA:

Left coronary artery

RCA:

Right coronary artery

LVOT:

Left ventricular outflow tract

References

  1. Borowski, F., J. Oldenburg, S. Pfensig, S. Kaule, S. Siewert, K. P. Schmitz, M. Stiehm, A. Öner, and N. Grabow. Investigations of flow alteration of commissural misalignment of TAVR using particle image velocimetry. Curr. Dir. Biomed. Eng. 2020. https://doi.org/10.1515/cdbme-2020-3041.

    Article  Google Scholar 

  2. Borowski, F., S. Kaule, J. Oldenburg, K. Schmitz, A. Öner, and M. Stiehm. Analysis of thrombosis risk of commissural misaligned transcatheter aortic valve prostheses using particle image velocimetry. Tm-technisches Messen. 2023. https://doi.org/10.1515/teme-2022-0100.

    Article  Google Scholar 

  3. Butnaru, A., J. Shaheen, D. Tzivoni, R. Tauber, D. Bitran, and S. Silberman. Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due tothrombus formation. Am. J. Cardiol. 112:1439–1444, 2013.

    Article  PubMed  Google Scholar 

  4. Carabello, B. A., W. J. Paulus, P. Blase, and A. Carabello. Aortic stenosis. The Lancet. 373:956–966, 2009. https://doi.org/10.1016/S0140.

    Article  Google Scholar 

  5. Celis, D., B. A. de Azevedo Gomes, I. Ibanez, P. N. Azevedo, P. S. Teixeira, and A. O. Nieckele. Prediction of stress map in ascending aorta-optimization of the coaxial position in transcatheter aortic valve replacement. Arq. Bras. Cardiol. 115(4):680–687, 2020. https://doi.org/10.36660/abc.20190385.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, P. A. Midha, V. Raghav, and A. P. Yoganathan. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45(2):310–331, 2017. https://doi.org/10.1007/s10439-016-1759-3.

    Article  PubMed  Google Scholar 

  7. Ducci, A., F. Pirisi, A. C. Egbe, S. V. Pislaru, P. A. Pellikka, J. T. Poterucha, H. V. Schaff, J. J. Maleszewski, and H. M. Connolly. Bioprosthetic valve thrombosis versus structural failure. J. Am. Coll. Cardiol. 66:2285–2294, 2015.

    Article  Google Scholar 

  8. Gülan, U., B. Lüthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach. Experimental study of aortic flow in the ascending aorta via particle tracking velocimetry. Exp. Fluids. 53(5):1469–1485, 2012. https://doi.org/10.1007/s00348-012-1371-8.

    Article  Google Scholar 

  9. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Amsterdam: Elsevier, 2006.

    Google Scholar 

  10. Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018. https://doi.org/10.1016/j.jmbbm.2018.06.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157(2):540–549, 2019. https://doi.org/10.1016/j.jtcvs.2018.05.086.

    Article  PubMed  Google Scholar 

  12. Hatoum, H., P. Maureira, S. Lilly, and L. P. Dasi. Impact of leaflet laceration on transcatheter aortic valve-in-valve washout: BASILICA to solve neosinus and sinus stasis. JACC: Cardiovasc. Interv. 12(13):1229–1237, 2019. https://doi.org/10.1016/j.jcin.2019.04.013.

    Article  PubMed  Google Scholar 

  13. Hatoum, H., S. Singh-Gryzbon, F. Esmailie, P. Ruile, F. Neumann, P. Blanke, V. Thourani, A. Yoganathan, and L. Dasi. Predictive model for thrombus formation after transcatheter valve replacement. Cardiovasc. Eng. Technol. 12(6):576–588, 2021.

    Article  PubMed  Google Scholar 

  14. Kondur, A., A. Briasoulis, M. Palla, A. Penumetcha, S. Mallikethi-Reddy, A. Badheka, and T. Schreiber. Meta-analysis of transcatheter aortic valve replacement versus surgical aortic valve replacement in patients with severe aortic valve stenosis. Am. J. Cardiol. 117(2):252–257, 2016. https://doi.org/10.1016/j.amjcard.2015.10.034.

    Article  PubMed  Google Scholar 

  15. Laadhari, A., and G. Székely. Warning about the risk of blood flow stagnation after transcatheter aortic valve implantation. Int. J. Eng. Math. Phys. Sci. 2017. https://doi.org/10.5281/zenodo.1340048.

    Article  Google Scholar 

  16. Leetmaa, T., N. C. Hansson, J. Leipsic, K. Jensen, S. H. Poulsen, H. R. Andersen, J. M. Jensen, J. Webb, P. Blanke, M. Tang, and B. L. Norgaard. Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography. Circ. Cardiovasc. Interv. 8:e001596, 2015.

    Article  PubMed  Google Scholar 

  17. Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, V. H. Thourani, E. M. Tuzcu, D. C. Miller, H. C. Herrmann, D. Doshi, D. J. Cohen, A. D. Pichard, S. Kapadia, T. Dewey, V. Babaliaros, W. Y. Szeto, M. R. Williams, D. Kereiakes, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374(17):1609–1620, 2016. https://doi.org/10.1056/nejmoa1514616.

    Article  CAS  PubMed  Google Scholar 

  18. Madukauwa-David, I. D., V. Sadri, P. A. Midha, V. Babaliaros, C. Aidun, and A. P. Yoganathan. An evaluation of the influence of coronary flow on transcatheter heart valve neo-sinus flow stasis. Ann. Biomed. Eng. 48(1):169–180, 2020. https://doi.org/10.1007/s10439-019-02324-y.

    Article  PubMed  Google Scholar 

  19. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C. A. Kliger, H. Guo, A. D. Pichard, N. J. Weissman, S. Kapadia, E. Manasse, D. L. Bhatt, M. B. Leon, and L. Søndergaard. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. De Marchena, E., J. Mesa, S. Pomenti, C. Marin y Kall, X. Marincic, K. Yahagi, E. Ladich, R. Kutz, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring, and R. Virmani. Thrombus formation following transcatheter aortic valve Biomedical Engineering Society an evaluation of the influence of coronary flow 179 replacement. J. Am. Coll. Cardiol. Cardiovasc. Interv. 8(728–739):2015, 2015.

    Google Scholar 

  21. Meier, D., M. Akodad, A. G. Chatfield, G. Lutter, T. Puehler, L. Sondergaard, D. A. Wood, J. G. Webb, S. L. Sellers, and J. Sathananthan. Impact of commissural misalignment on hydrodynamic function following valve-in-valve intervention with the ACURATE neo. JACC: Cardiovasc. Interv. 2022. https://doi.org/10.1016/j.jcin.2022.05.034.

    Article  PubMed  Google Scholar 

  22. Midha, P. A Parametric Investigation of Aortic Valve-in-Valve Performance [PhD Dissertation]. Georgia Institute of Technology, 2017.

  23. Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 45(2):405–412, 2017. https://doi.org/10.1007/s10439-016-1642-2.

    Article  PubMed  Google Scholar 

  24. Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation. 136(17):1598–1609, 2017.

    Article  PubMed  Google Scholar 

  25. Ncho, B., A. Siefert, V. Sadri, J. Ortner, and A. P. Yoganathan. Effect of leaflet type and leaflet-stent attachment height on transcatheter aortic valve leaflet thrombosis potential. J. Med. Devices-Trans. ASME. 2022. https://doi.org/10.1115/1.4052902.

    Article  Google Scholar 

  26. Ncho, B. E., A. W. Siefert, V. Sadri, J. Ortner, and A. P. Yoganathan. Effect of leaflet type and leaflet-stent attachment height on transcatheter aortic valve leaflet thrombosis potential. J. Med. Devices Trans. ASME. 2022. https://doi.org/10.1115/1.4052902.

    Article  Google Scholar 

  27. Pott, D., A. Sedaghat, C. Schmitz, N. Werner, T. Schmitz-Rode, U. Steinseifer, and S. V. Jansen. Hemodynamics inside the neo- and native sinus after TAVR: effects of implant depth and cardiac output on flow field and coronary flow. Artif. Organs. 45(1):68–78, 2021. https://doi.org/10.1111/aor.13789.

    Article  CAS  PubMed  Google Scholar 

  28. Sakamoto, S., S. Takahashi, A. U. Coskun, M. I. Papafaklis, A. Takahashi, S. Saito, P. H. Stone, and C. L. Feldman. Relation of distribution of coronary blood flow volume to coronary artery dominance. Am. J. Cardiol. 111(10):1420–1424, 2013. https://doi.org/10.1016/j.amjcard.2013.01.290.

    Article  PubMed  Google Scholar 

  29. Salim, M. T., V. Sadri, P. Nair, et al. Transcatheter aortic valve thrombogenesis: a foreign materials perspective. Cardiovasc. Eng. Technol. 12:28–36, 2021. https://doi.org/10.1007/s13239-020-00505-8.

    Article  PubMed  Google Scholar 

  30. Schäfers, H. J., W. Schmied, G. Marom, and D. Aicher. Cusp height in aortic valves. J. Thorac. Cardiovasc. Surg. 146(2):269–274, 2013. https://doi.org/10.1016/j.jtcvs.2012.06.053.

    Article  PubMed  Google Scholar 

  31. Sengupta, P., J. Narula, et al. TAVR-related complications. J. Am. Coll. Cardiol. Imaging. 10(1):100–103, 2017. https://doi.org/10.1016/j.jcmg.2016.11.013.

    Article  Google Scholar 

  32. Singh-Gryzbon, S., B. Ncho, V. Sadri, S. S. Bhat, S. S. Kollapaneni, D. Balakumar, Z. A. Wei, P. Ruile, F. J. Neumann, P. Blanke, and A. P. Yoganathan. Influence of patient-specific characteristics on transcatheter heart valve neo-sinus flow: an in silico study. Ann. Biomed. Eng. 48(10):2400–2411, 2020. https://doi.org/10.1007/s10439-020-02532-x.

    Article  PubMed  Google Scholar 

  33. Thourani, V. H., S. Kodali, R. R. Makkar, H. C. Herrmann, M. Williams, V. Babaliaros, R. Smalling, S. Lim, S. C. Malaisrie, S. Kapadia, W. Y. Szeto, K. L. Greason, D. Kereiakes, G. Ailawadi, B. K. Whisenant, C. Devireddy, J. Leipsic, R. T. Hahn, P. Pibarot, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. The Lancet. 387(10034):2218–2225, 2016. https://doi.org/10.1016/S0140-6736(16)30073-3.

    Article  Google Scholar 

  34. Trusty, P. M., V. Sadri, I. D. Madukauwa-David, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. Neosinus flow stasis correlates with thrombus volume post-TAVR: a patient-specific in vitro study. JACC Cardiovasc Interv. 12(13):1288–1290, 2019. https://doi.org/10.1016/j.jcin.2019.03.022.

    Article  PubMed  Google Scholar 

  35. Trusty, P. M., S. S. Bhat, V. Sadri, M. T. Salim, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. The role of flow stasis in transcatheter aortic valve leaflet thrombosis. J. Thorac. Cardiovasc. Surg. 164(3):e105–e117, 2022. https://doi.org/10.1016/j.jtcvs.2020.10.139.

    Article  PubMed  Google Scholar 

  36. Vogl, B., R. Gadhave, Z. Wang, A. el Shaer, A. Chavez Ponce, M. Alkhouli, and H. Hatoum. Effect of aortic curvature on bioprosthetic aortic valve performance. J. Biomech. 2023. https://doi.org/10.1016/j.jbiomech.2022.111422.

    Article  PubMed  Google Scholar 

  37. Wolberg, A. S., M. M. Aleman, K. Leiderman, and K. R. Machlus. Procoagulant activity in hemostasis and thrombosis. Anesthe. Analg. 114(2):275–285, 2012. https://doi.org/10.1213/ane.0b013e31823a088c.

    Article  CAS  Google Scholar 

  38. Zhang, Y., R. Zhang, N. Thomas, A. H. Ullah, B. Eichholz, J. Estevadeordal, and Y. B. Suzen. Experimental and computational study of pulsatile flow characteristics in Romanesque and gothic aortic arch models. Med. Eng. Phys. 2022. https://doi.org/10.1016/j.medengphy.2022.103784.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for providing constructive feedback that has improved the quality of the manuscript substantially. The authors also acknowledge the members of the Cardiovascular Fluid Mechanics Laboratory (CFML) of Georgia Institute of Technology, especially Dr. Thangam Natarajan, for their assistance. Lastly, the authors also appreciate Drs. Beatrice Ncho, Phillip Trusty and Yajun Mei for valuable feedback on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Ethics declarations

Conflict of interest

Raj Makkar, receives research grants from Edwards Lifesciences, Medtronic, Abbott Vascular, Cordis, and St. Jude Medical; and is proctor for Edwards Lifesciences and a consultant to Medtronic. Vasilis C. Babaliaros, has served as a consultant for Edwards Lifesciences and Abbott Vascular; and has served as a consultant for and is an equity holder in Transmural Systems. Rahul P. Sharma, is a consultant or researcher for Edwards Lifesciences, Boston Scientific, Keystone Heart, and Abbott. All other authors reported no conflicts of interest.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1415 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Sadri, V., Chen, H. et al. Effect of Ascending Aortic Curvature on Flow in the Sinus and Neo-sinus Following TAVR: A Patient-Specific Study. Ann Biomed Eng 52, 425–439 (2024). https://doi.org/10.1007/s10439-023-03392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03392-x

Keywords

Navigation