Skip to main content
Log in

Histological, Physiological and Biomechanical Effects of Low-Level Laser Therapy on Tendon Healing in Animals and Humans: A Systematic Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low-level Laser Therapy (LLLT) was widely used in clinical practice for tendon disorders. However, the underlying mechanisms and effectiveness of LLLT in treating tendon injury remain unclear. Therefore, the present study was conducted aiming to summarize the evidence regarding the histological, physiological, and biomechanical effects of LLLT on tendon healing in animal and human models. Four databases were searched for relevant literature. Four independent reviewers screened abstracts and full-text articles, extracted relevant data, evaluated the risk of bias, and quantified the quality of evidence. Database searches yielded 1400 non-duplicated citations. Fifty-five studies were included (50 animal and five human studies). Animal studies revealed that LT had stimulating effects on collagen organization, collagen I and collagen II formation, matrix metalloproteinase (MMP)-8, transforming growth factor β1, vascular endothelial growth factor, hydroxyproline, maximum load, maximum elongation before breaking, and tendon stiffness. However, LLLT had inhibitory effects on the number of inflammatory cells, histological scores, relative amount of collagen III, cyclooxygenase-2, prostaglandin E2 (PGE2), interleukin-6, tumor necrosis factor–α, MMP-1, and MMP-3. Although one human study found that LLLT reduced the concentration of PGE2 in peritendinous tissue of the Achilles tendon, other human studies revealed that the effects of LLLT on the physiology and biomechanics of human tendons remained uncertain. LLLT facilitates tendon healing through various histological, physiological, and biomechanical effects in animal models. Only post-LLLT anti-inflammatory effects were found in human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaut, L., and D. Duprez. Tendon development and diseases. Wiley Interdiscip. Rev. 5(1):5–23, 2016.

    Article  CAS  Google Scholar 

  2. Raikin, S. M., D. N. Garras, and P. V. Krapchev. Achilles tendon injuries in a United States population. Foot Ankle Int. 34(4):475–480, 2013.

    Article  PubMed  Google Scholar 

  3. Thomopoulos, S., W. C. Parks, D. B. Rifkin, and K. A. Derwin. Mechanisms of tendon injury and repair. J. Orthop. Res. 33(6):832–839, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin, M., and J. Ralphs. Invited review tendons and ligaments-an overview. Histol. Histopathol. 12:1135–1144, 1997.

    CAS  PubMed  Google Scholar 

  5. Sharma, P., and N. Maffulli. Biology of tendon injury: healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 6(2):181, 2006.

    CAS  PubMed  Google Scholar 

  6. Obrien, M. Structure and metabolism of tendons. Scand. J. Med. Sci. Sports. 7(2):55–61, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Chung, H., T. Dai, S. K. Sharma, et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40(2):516–533, 2012.

    Article  PubMed  Google Scholar 

  8. Karu, T. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Doklady Akademii Nauk. 342:693–695, 1995.

    CAS  PubMed  Google Scholar 

  9. Cotler, H. B., R. T. Chow, M. R. Hamblin, and J. Carroll. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop. Rheumatol. 2(5):00068, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lazovic, M., O. Ilic-Stojanovic, M. Kocic, et al. Placebo-controlled investigation of low-level laser therapy to treat carpal tunnel syndrome. Photomed. Laser Surg. 32(6):336–344, 2014.

    Article  PubMed  Google Scholar 

  11. Sereysky, J. B., E. L. Flatow, and N. Andarawis-Puri. Musculoskeletal regeneration and its implications for the treatment of tendinopathy. Int. J. Exp. Pathol. 94(4):293–303, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lipman, K., C. Wang, K. Ting, C. Soo, and Z. Zheng. Tendinopathy: injury, repair, and current exploration. Drug Des. Dev. Ther. 12:591–603, 2018.

    Article  CAS  Google Scholar 

  13. Martimbianco, A. L. C., R. E. S. Ferreira, C. O. C. Latorraca, et al. Photobiomodulation with low-level laser therapy for treating Achilles tendinopathy: a systematic review and meta-analysis. Clin. Rehabilitation. 34(6):713–722, 2020.

    Article  Google Scholar 

  14. Naterstad, I. F., J. Joensen, J. M. Bjordal, et al. Efficacy of low-level laser therapy in patients with lower extremity tendinopathy or plantar fasciitis: systematic review and meta-analysis of randomised controlled trials. BMJ Open.12(9):e059479, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haslerud, S., L. H. Magnussen, J. Joensen, R. A. Lopes-Martins, and J. M. Bjordal. The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother. Res. Int. 20(2):108–125, 2015.

    Article  PubMed  Google Scholar 

  16. Tumilty, S., J. Munn, S. Mcdonough, et al. Low level laser treatment of tendinopathy: a systematic review with meta-analysis. Photomed. Laser Surg. 28(1):3, 2010.

    Article  PubMed  Google Scholar 

  17. Huang, Y. Y., A. C. H. Chen, J. D. Carroll, and M. R. Hamblin. Biphasic dose response in low level light therapy. Dose-Response. 7(4):358–383, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woodruff, L. D., J. M. Bounkeo, W. M. Brannon, K. S. Dawes, and C. S. Enwemeka. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed. Laser Surg. 22(3):241–247, 2004.

    Article  PubMed  Google Scholar 

  19. Moher, D., L. Shamseer, M. Clarke, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4(1):1–9, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hooijmans, C. R., M. M. Rovers, R. de Vries, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 14(1):1–9, 2014.

    Article  Google Scholar 

  21. Sterne, J. A., J. Savović, M. J. Page, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ.366:i4898, 2019.

    Article  Google Scholar 

  22. Sterne, J. A., M. A. Hernán, B. C. Reeves, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ.355:i4919, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Muka, T., M. Glisic, J. Milic, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur. J. Epidemiol. 35(1):49–60, 2020.

    Article  PubMed  Google Scholar 

  24. Ioannidis, J. P., N. A. Patsopoulos, and E. Evangelou. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 335(7626):914–916, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balshem, H., M. Helfand, H. J. Schünemann, et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64(4):401–406, 2011.

    Article  PubMed  Google Scholar 

  26. Murad, M. H., R. A. Mustafa, H. J. Schünemann, S. Sultan, and N. Santesso. Rating the certainty in evidence in the absence of a single estimate of effect. Evid. Based Med. 22(3):85–87, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Casalechi, H. L., A. C. D. Marques, E. A. P. da Silva, et al. Analysis of the effect of phototherapy in model with traumatic Achilles tendon injury in rats. Lasers Med. Sci. 29(3):1075–1081, 2014.

    Article  PubMed  Google Scholar 

  28. de Souza, M. V., J. D. L. Moreira, M. O. da Silva, et al. Histomorphometric analysis of the Achilles tendon of Wistar rats treated with laser therapy and eccentric exercise. Pesquisa Veterinaria Brasileira. 35:39–50, 2015.

    Article  Google Scholar 

  29. Pinfildi, C. E., É. da Silva, R. A. Folha, et al. Mast cell curve-response in partial Achilles tendon rupture after 830 nm phototherapy. Photomed. Laser Surg. 32(2):88–92, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Fillipin, L. I., J. L. Mauriz, K. Vedovelli, et al. Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg. Med. 37(4):293–300, 2005.

    Article  PubMed  Google Scholar 

  31. Allahverdi, A., D. Sharifi, M. A. Takhtfooladi, et al. Evaluation of low-level laser therapy, platelet-rich plasma, and their combination on the healing of Achilles tendon in rabbits. Lasers Med. Sci. 30(4):1305–1313, 2015.

    Article  PubMed  Google Scholar 

  32. Haslerud, S., R. A. B. Lopes-Martins, L. Frigo, et al. Low-level laser therapy and cryotherapy as mono- and adjunctive therapies for achilles tendinopathy in rats. Photomed. Laser Surg. 35(1):32–42, 2017.

    Article  CAS  PubMed  Google Scholar 

  33. Naterstad, I. F., R. P. Rossi, R. L. Marcos, et al. Comparison of photobiomodulation and anti-inflammatory drugs on tissue repair on collagenase-induced achilles tendon inflammation in rats. Photomed. Laser Surg. 36(3):137–145, 2018.

    Article  CAS  PubMed  Google Scholar 

  34. de Freitas Dutra Júnior, E., S. M. C. M. Hidd, M. M. Amaral, et al. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers Med. Sci. 37(2):971–981, 2022.

    Article  PubMed  Google Scholar 

  35. Akamatsu, F. E., W. R. Teodoro, A. M. Itezerote, et al. Photobiomodulation therapy increases collagen II after tendon experimental injury. Histol. Histopathol. 36(6):663–674, 2021.

    CAS  PubMed  Google Scholar 

  36. Carrinho, P. M., A. C. M. Renno, P. Koeke, et al. Comparative study using 685-nm and 830-nm lasers in the tissue repair of tenotomized tendons in the mouse. Photomed. Laser Surg. 24(6):754–758, 2006.

    Article  PubMed  Google Scholar 

  37. Arruda, E. R. B., N. C. Rodrigues, C. Taciro, and N. A. Parizotto. Influence of different low-intensity laser therapy wavelengths for rat tendon regeneration following tenotomy. Revista Brasileira de Fisioterapia. 11(4):283–288, 2007.

    Article  Google Scholar 

  38. Oliveira, F. S., C. E. Pinfildi, N. A. Parizoto, et al. Effect of low level laser therapy (830 nm) with different therapy regimes on the process of tissue repair in partial lesion calcaneous tendon. Lasers Surg. Med. 41(4):271–276, 2009.

    Article  PubMed  Google Scholar 

  39. Lima, J. G. M., G. R. Oliveira, M. Lima, A. S. Ferreira, and J. G. Silva. Influence of low intensity laser therapy (AsGa) on the cicatrization process of mechanic tendon injury in wistar rats. Laser Phys. 22(9):1445–1448, 2012.

    Article  CAS  Google Scholar 

  40. Guerra, F. D. R., C. P. Vieira, M. Dos Santos de Almeida, et al. Pulsed LLLT improves tendon healing in rats: a biochemical, organizational, and functional evaluation. Lasers Med. Sci. 29(2):805–811, 2014.

    Article  PubMed  Google Scholar 

  41. de Jesus, J. F., D. D. Spadacci-Morena, N. D. Rabelo, et al. Low-level laser therapy on tissue repair of partially injured achilles tendon in rats. Photomed. Laser Surg. 32(6):345–350, 2014.

    Article  PubMed  Google Scholar 

  42. Lucke, L. D., F. O. Bortolazzo, V. Theodoro, et al. Low-level laser and adipose-derived stem cells altered remodelling genes expression and improved collagen reorganization during tendon repair. Cell Prolif.52(3):e12580, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bastos, J. L. N., R. F. Z. Lizarelli, and N. A. Parizotto. Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Phys. 19(9):1925–1931, 2009.

    Article  CAS  Google Scholar 

  44. Wood, V. T., C. E. Pinfildi, M. A. I. Neves, et al. Collagen changes and realignment induced by low-level laser therapy and low-intensity ultrasound in the calcaneal tendon. Lasers Surg. Med. 42(6):559–565, 2010.

    Article  PubMed  Google Scholar 

  45. Neves, M. A. I., C. E. Pinfildi, V. T. Wood, et al. Different power settings of LLLT on the repair of the calcaneal tendon. Photomed. Laser Surg. 29(10):663–668, 2011.

    Article  CAS  PubMed  Google Scholar 

  46. Locke, R. C., E. A. Lemmon, E. Dudzinski, et al. Photobiomodulation does not influence maturation and mildly improves functional healing of mouse achilles tendons. J. Orthop. Res. 38(8):1866–1875, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elwakil, T. F. An in-vivo experimental evaluation of He-Ne laser photostimulation in healing Achilles tendons. Lasers Med. Sci. 22(1):53–59, 2007.

    Article  PubMed  Google Scholar 

  48. Iacopetti, I., A. Perazzi, V. Maniero, et al. Effect of MLS(®) laser therapy with different dose regimes for the treatment of experimentally induced tendinopathy in sheep: pilot study. Photomed. Laser Surg. 33(3):154–163, 2015.

    Article  CAS  PubMed  Google Scholar 

  49. Guerra, F. D. R., C. P. Vieira, M. S. Almeida, et al. LLLT improves tendon healing through increase of MMP activity and collagen synthesis. Lasers Med. Sci. 28(5):1281–1288, 2013.

    Article  PubMed  Google Scholar 

  50. de Carvalho, P. K., L. Silveira, D. Barbosa, et al. Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry. Lasers Med. Sci. 31(1):19–26, 2016.

    Article  PubMed  Google Scholar 

  51. Marques, A. C. F., R. Albertini, A. J. Serra, et al. Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats. Lasers Med. Sci. 31(9):1915–1923, 2016.

    Article  PubMed  Google Scholar 

  52. Barbosa, D., R. A. de Souza, W. R. G. de Carvalho, et al. Low-level laser therapy combined with platelet-rich plasma on the healing calcaneal tendon: a histological study in a rat model. Lasers Med. Sci. 28(6):1489–1494, 2013.

    Article  PubMed  Google Scholar 

  53. Salate, A. C. B., G. Barbosa, P. Gaspar, et al. Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of achilles tendon in rats. Photomed. Laser Surg. 23(5):470–475, 2005.

    Article  PubMed  Google Scholar 

  54. Ferreira, R., R. Silva, R. A. Folha, et al. Achilles tendon vascularization of proximal, medial, and distal portion before and after partial lesion in rats treated with phototherapy. Photomed. Laser Surg. 33(12):579–584, 2015.

    Article  PubMed  Google Scholar 

  55. de Jesus, J. F., D. D. Spadacci-Morena, N. D. D. Rabelo, et al. Low-level laser therapy (780 nm) on VEGF modulation at partially injured Achilles tendon. Photomed. Laser Surg. 34(8):331–335, 2016.

    Article  PubMed  Google Scholar 

  56. de Oliveira, A. R., F. S. da Silva, R. H. Bortolin, et al. Effect of photobiomodulation and exercise on early remodeling of the Achilles tendon in streptozotocin-induced diabetic rats. PLoS ONE.14(2):e0211643, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marcos, R. L., E. C. P. Leal Junior, F. D. M. Messias, et al. Infrared (810 nm) low-level laser therapy in rat achilles tendinitis: a consistent alternative to drugs. Photochem. Photobiol. 87(6):1447–1452, 2011.

    Article  CAS  PubMed  Google Scholar 

  58. Pires, D., M. Xavier, T. Araújo, et al. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti-and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med. Sci. 26(1):85–94, 2011.

    Article  PubMed  Google Scholar 

  59. Marcos, R. L., E. C. P. Leal-Junior, G. Arnold, et al. Low-level laser therapy in collagenase-induced Achilles tendinitis in rats: analyses of biochemical and biomechanical aspects. J. Orthop. Res. 30(12):1945–1951, 2012.

    Article  CAS  PubMed  Google Scholar 

  60. de Jesus, J. F., D. D. Spadacci-Morena, N. D. Dos Anjos Rabelo, et al. Low-level laser therapy in IL-1β, COX-2, and PGE2 modulation in partially injured Achilles tendon. Lasers Med. Sci. 30(1):153–158, 2015.

    Article  PubMed  Google Scholar 

  61. Torres-Silva, R., R. A. B. Lopes-Martins, J. M. Bjordal, et al. The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis. Lasers Med. Sci. 30(7):1985–1990, 2015.

    Article  PubMed  Google Scholar 

  62. Guerra, F. D., C. P. Vieira, L. P. Oliveira, et al. Low-level laser therapy modulates pro-inflammatory cytokines after partial tenotomy. Lasers Med. Sci. 31(4):759–766, 2016.

    Article  Google Scholar 

  63. Laraia, E. M. S., I. S. Silva, D. M. Pereira, et al. Effect of low-level laser therapy (660 nm) on acute inflammation induced by tenotomy of Achilles tendon in rats. Photochem. Photobiol. 88(6):1546–1550, 2012.

    Article  CAS  PubMed  Google Scholar 

  64. Casalechi, H. L., E. C. P. Leal-Junior, M. Xavier, et al. Low-level laser therapy in experimental model of collagenase-induced tendinitis in rats: effects in acute and chronic inflammatory phases. Lasers Med. Sci. 28(3):989–995, 2013.

    Article  PubMed  Google Scholar 

  65. de Fernandes Jesus, J., D. D. Spadacci-Morena, N. D. D. A. Rabelo, et al. Photobiomodulation of matrix metalloproteinases in rat calcaneal tendons. Photobiomodul. Photomed. Laser Surg. 37(7):421–427, 2019.

    Google Scholar 

  66. Guerra, F. D., C. P. Vieira, P. P. Marques, L. P. Oliveira, and E. R. Pimentel. Low level laser therapy accelerates the extracellular matrix reorganization of inflamed tendon. Tissue Cell. 49(4):483–488, 2017.

    Article  Google Scholar 

  67. Marcos, R. L., G. Arnold, V. Magnenet, et al. Biomechanical and biochemical protective effect of low-level laser therapy for achilles tendinitis. J. Mech. Behav. Biomed. Mater. 29:272–285, 2014.

    Article  CAS  PubMed  Google Scholar 

  68. Demir, H., P. Menku, M. Kirnap, M. Calis, and I. Ikizceli. Comparison of the effects of laser, ultrasound, and combined laser plus ultrasound treatments in experimental tendon healing. Lasers Surg. Med. 35(1):84–89, 2004.

    Article  PubMed  Google Scholar 

  69. Shen, Y. W., and X. W. Shi. Low level laser for repair of collagen in the tendon of rats with enthesiopathy. Chin. J. Tissue Eng. Res. 16(28):5165–5169, 2012.

    CAS  Google Scholar 

  70. Aliodoust, M., M. Bayat, M. R. Jalili, et al. Evaluating the effect of low-level laser therapy on healing of tentomized Achilles tendon in streptozotocin-induced diabetic rats by light microscopical and gene expression examinations. Lasers Med. Sci. 29(4):1495–1503, 2014.

    Article  PubMed  Google Scholar 

  71. Shi, X. W., L. J. Long, Y. W. Shen, and Z. P. Wang. Transforming growth factor-beta 1 expression in early enthesiopathy of Achilles tendon in rats after low-level laser therapy. Chin. J. Tissue Eng. Res. 18(24):3808–3813, 2014.

    CAS  Google Scholar 

  72. Ng, G. Y. F., and D. T. C. Fung. The combined treatment effects of therapeutic laser and exercise on tendon repair. Photomed. Laser Surg. 26(2):137–141, 2008.

    Article  PubMed  Google Scholar 

  73. Ng, G. Y. F., and P. Y. M. Chung. Effects of a therapeutic laser and passive stretching program for treating tendon overuse. Photomed. Laser Surg. 30(3):155–159, 2012.

    Article  PubMed  Google Scholar 

  74. Nouruzian, M., M. Alidoust, M. Bayat, M. Bayat, and M. Akbari. Effect of low-level laser therapy on healing of tenotomized Achilles tendon in streptozotocin-induced diabetic rats. Lasers Med. Sci. 28(2):399–405, 2013.

    Article  PubMed  Google Scholar 

  75. de Souza, M. V., C. H. O. Silva, M. O. da Silva, et al. Achilles tendon of wistar rats treated with laser therapy and eccentric exercise. Revista Brasileira de Medicina Do Esporte. 21(5):332–337, 2015.

    Article  Google Scholar 

  76. Joensen, J., N. R. Gjerdet, S. Hummelsund, et al. An experimental study of low-level laser therapy in rat Achilles tendon injury. Lasers Med. Sci. 27(1):103–111, 2012.

    Article  PubMed  Google Scholar 

  77. Bjordal, J. M., R. A. B. Lopes-Martins, V. V. Iversen, et al. A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br. J. Sports Med. 40(1):76–80, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharma, R., A. Thukral, S. Kumar, and S. K. Bhargava. Effect of low level lasers in de Quervains tenosynovitis: prospective study with ultrasonographic assessment. Physiotherapy. 88(12):730–734, 2002.

    Article  Google Scholar 

  79. Sharma, R., A. N. Aggarwal, S. Bhatt, S. Kumar, and S. K. Bhargava. Outcome of low level lasers versus ultrasonic therapy in de Quervain’s tenosynovitis. Indian J. Orthop. 49(5):542–548, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Corrigan, P., D. H. Cortes, and K. G. Silbernagel. Immediate effect of photobiomodulation therapy on Achilles tendon morphology and mechanical properties: an exploratory study. Transl. Sports Med. 2(4):164–172, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zaki, Z., R. Ravanbod, M. Schmitz, and K. Abbasi. Comparison of low level and high power laser combined with kinesiology taping on shoulder function and musculoskeletal sonography parameters in subacromial impingement syndrome: a Randomized placebo-controlled trial. Physiother. Theory Pract. 38(13):2514–2525, 2021.

    Article  PubMed  Google Scholar 

  82. Magra, M., and N. Maffulli. Genetic aspects of tendinopathy. J. Sci. Med. Sport. 11(3):243–247, 2008.

    Article  PubMed  Google Scholar 

  83. Lopes Silva, R. S. D., D. R. Pessoa, R. R. Mariano, et al. Systematic Review of Photobiomodulation Therapy (PBMT) on the experimental calcaneal tendon injury in rats. Photochem. Photobiol. 96(5):981–997, 2020.

    Article  CAS  PubMed  Google Scholar 

  84. Schulze-Tanzil, G., O. Al-Sadi, E. Wiegand, et al. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand. J. Med. Sci. Sports. 21(3):337–351, 2011.

    Article  CAS  PubMed  Google Scholar 

  85. Silveira, L. B., R. A. Prates, M. D. Novelli, et al. Investigation of mast cells in human gingiva following low-intensity laser irradiation. Photomed. Laser Surg. 26(4):315–321, 2008.

    Article  CAS  PubMed  Google Scholar 

  86. Sharma, P., and N. Maffulli. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. 87(1):187–202, 2005.

    PubMed  Google Scholar 

  87. Smith, M. M., G. Sakurai, S. Smith, et al. Modulation of aggrecan and ADAMTS expression in ovine tendinopathy induced by altered strain. Arth. Rheumatism. 58(4):1055–1066, 2008.

    Article  CAS  Google Scholar 

  88. Vilarta, R., and Bde C. Vidal. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: aggregation and macromolecular order in collagen bundles. Matrix. 9(1):55–61, 1989.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Y. L. Wong.

Ethics declarations

Conflict of interest

There were no financial or competing conflicts of interest in relation to this work.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Zhou, X., Zheng, F. et al. Histological, Physiological and Biomechanical Effects of Low-Level Laser Therapy on Tendon Healing in Animals and Humans: A Systematic Review. Ann Biomed Eng 51, 2659–2707 (2023). https://doi.org/10.1007/s10439-023-03364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03364-1

Keywords

Navigation