Skip to main content

Advertisement

Log in

Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the new heterologous fibrin biopolymer associated, or not, with photobiomodulation therapy for application in tendon injuries, considered a serious and common orthopedic problem. Thus, 84 Rattus norvegicus had partial transection of the calcaneus tendon (PTCT) and were randomly divided into: control (CG); heterologous fibrin biopolymer (HFB); photobiomodulation (PBM); heterologous fibrin biopolymer + photobiomodulation (HFB + PBM). The animals received HFB immediately after PTCT, while PBM (660 nm, 40 mW, 0.23 J) started 24 h post injury and followed every 24 h for 7, 14, and 21 days. The results of the edema volume showed that after 24 h of PTCT, there was no statistical difference among the groups. After 7, 14, and 21 days, it was observed that the treatment groups were effective in reducing edema when compared to the control. The HFB had the highest edema volume reduction after 21 days of treatment. The treatment groups did not induce tissue necrosis or infections on the histopathological analysis. Tenocyte proliferation, granulation tissue, and collagen formation were observed in the PTCT area in the HFB and HFB + PBM groups, which culminated a better repair process when compared to the CG in the 3 experimental periods. Interestingly, the PBM group revealed, in histological analysis, major tendon injury after 7 days; however, in the periods of 14 and 21 days, the PBM had a better repair process compared to the CG. In the quantification of collagen, there was no statistical difference between the groups in the 3 experimental periods. The findings suggest that the HFB and PBM treatments, isolated or associated, were effective in reducing the volume of the edema, stimulating the repair process. However, the use of HFB alone was more effective in promoting the tendon repair process. Thus, the present study consolidates previous studies of tendon repair with this new HFB. Future clinical trials will be needed to validate this proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. James R, Kesturu G, Balian G, Chhabra AB (2008) Tendon biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 33:102–112. https://doi.org/10.1016/j.jhsa.2007.09.007

    Article  PubMed  Google Scholar 

  2. Andarawis-Puri N, Flatow EL, Soslowsky LJ (2015) Tendon basic science: development, repair, regeneration, and healing. J Orthop Res 33:780–784. https://doi.org/10.1002/jor.22869

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thorpe CT, Peffers MJ, Simpson D et al (2016) Anatomical heterogeneity of tendon fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 6:1–12. https://doi.org/10.1038/srep20455

    Article  CAS  Google Scholar 

  4. Bogaerts S, Desmet H, Slagmolen P, Peers K (2016) Strain mapping in the Achilles tendon-a systematic review. J Biomech 49:1411–1419. https://doi.org/10.1016/j.jbiomech.2016.02.057

    Article  PubMed  Google Scholar 

  5. Egger AC, Berkowitz MJ (2017) Achilles tendon injuries. Curr Rev Musculoskelet Med 10:72–80. https://doi.org/10.1007/s12178-017-9386-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Karaaslan F, Mermerkaya MU, Çıraklı A et al (2016) Surgical versus conservative treatment following acute rupture of the Achilles tendon: is there a pedobarographic difference? Ther Clin Risk Manag 12:1311–1315. https://doi.org/10.2147/TCRM.S116385

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao J-G, Meng X-H, Liu L et al (2017) Early functional rehabilitation versus traditional immobilization for surgical Achilles tendon repair after acute rupture: a systematic review of overlapping meta-analyses. Sci Rep 7:39871. https://doi.org/10.1038/srep39871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawrence JE, Nasr P, Fountain DM et al (2017) Functional outcomes of conservatively managed acute ruptures of the Achilles tendon. Bone Joint J 99:87–93. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0452.R1

    Article  PubMed  Google Scholar 

  9. Deng S, Sun Z, Zhang C et al (2017) Surgical treatment versus conservative management for acute Achilles tendon rupture: a systematic review and meta-analysis of randomized controlled trials. J Foot Ankle Surg 56:1236–1243. https://doi.org/10.1053/j.jfas.2017.05.036

    Article  PubMed  Google Scholar 

  10. Meulenkamp B, Stacey D, Fergusson D et al (2018) Protocol for treatment of Achilles tendon ruptures a systematic review with network meta-analysis. Syst Rev 7:1–7. https://doi.org/10.1186/s13643-018-0912-5

    Article  Google Scholar 

  11. Stavenuiter XJR, Lubberts B, Prince RM et al (2019) Postoperative complications following repair of acute Achilles tendon rupture. Foot Ankle Int 40:679–686. https://doi.org/10.1177/1071100719831371

    Article  PubMed  Google Scholar 

  12. Ochen Y, Beks RB, Van Heijl M et al (2019) Operative treatment versus nonoperative treatment of Achilles tendon ruptures: systematic review and meta-analysis. BMJ 7(364):k5120. https://doi.org/10.1136/bmj.k5120

    Article  Google Scholar 

  13. Kryukova AE, Shpichka AI, Konarev PV et al (2018) Shape determination of bovine fibrinogen in solution using small-angle scattering data. Crystallogr Reports 63:871–873. https://doi.org/10.1134/S1063774518060202

    Article  CAS  Google Scholar 

  14. Frauz K, Teodoro L, Carneiro G et al (2019) Transected tendon treated with a new fibrin sealant alone or associated with adipose-derived stem Cells. Cells 8:56. https://doi.org/10.3390/cells8010056

    Article  CAS  PubMed Central  Google Scholar 

  15. Ferreira RS, de Barros LC, Abbade LPF et al (2017) Heterologous fibrin sealant derived from snake venom: from bench to bedside-an overview. J Venom Anim Toxins Incl Trop Dis 23:1–12. https://doi.org/10.1186/s40409-017-0109-8

    Article  CAS  Google Scholar 

  16. Gasparotto VPO, Landim-Alvarenga FC, Oliveira ALR et al (2014) A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res Ther 5(3):78. https://doi.org/10.1186/scrt467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orsi PR, Landim-Alvarenga FC, Justulin LA et al (2017) A unique heterologous fibrin sealant (HFS) as a candidate biological scaffold for mesenchymal stem cells in osteoporotic rats. Stem Cell Res Ther 8:1–14. https://doi.org/10.1186/s13287-017-0654-7

    Article  CAS  Google Scholar 

  18. Cassaro CV, Justulin Jr. LA, Lima PR de, et al (2019) Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J Venom Anim Toxins Incl Trop Dis 25:. https://doi.org/10.1590/1678-9199-jvatitd-2019-0027

  19. Creste CFZ, Orsi PR, Landim-Alvarenga FC et al (2020) Highly effective fibrin biopolymer scaffold for stem cells upgrading bone regeneration. Materials (Basel) 13:2747. https://doi.org/10.3390/ma13122747

    Article  CAS  Google Scholar 

  20. Buchaim DV, Cassaro CV, Shindo JVTC, et al (2019) Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: a systematic review. J Venom Anim Toxins Incl Trop Dis 25 https://doi.org/10.1590/1678-9199-jvatitd-2019-0038

  21. He M, Gan AWT, Lim AYT et al (2013) The effect of fibrin glue on tendon healing and adhesion formation in a rabbit model of flexor tendon injury and repair. J Plast Surg Hand Surg 47:509–512. https://doi.org/10.3109/2000656X.2013.789037

    Article  PubMed  Google Scholar 

  22. Rahal SC, Amaral MSP, Pai VD, et al (2004) Effect of fibrin glue derived from snake venom on the viability of autogenous split-thickness skin graft. J Venom Anim Toxins Incl Trop Dis 10.https://doi.org/10.1590/S1678-91992004000200006

  23. de Barros CN, Miluzzi Yamada AL, Junior RSF et al (2016) A new heterologous fibrin sealant as a scaffold to cartilage repair—experimental study and preliminary results. Exp Biol Med 241:1410–1415. https://doi.org/10.1177/1535370215597192

    Article  CAS  Google Scholar 

  24. Giordano S, Koskivuo I, Suominen E, Veräjänkorva E (2017) Tissue sealants may reduce haematoma and complications in face-lifts: a meta-analysis of comparative studies. J Plast Reconstr Aesthetic Surg 70:297–306. https://doi.org/10.1016/j.bjps.2016.11.028

    Article  Google Scholar 

  25. Biscola NP, Cartarozzi LP, Ulian-Benitez S et al (2017) Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 23:1–11. https://doi.org/10.1186/s40409-017-0103-1

    Article  CAS  Google Scholar 

  26. Vaghardoost R, Momeni M, Kazemikhoo N et al (2018) Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers Med Sci 33:603–607. https://doi.org/10.1007/s10103-017-2430-4

    Article  PubMed  Google Scholar 

  27. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:1–37. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  Google Scholar 

  28. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94:199–212. https://doi.org/10.1111/php.12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tim CR, Bossini PS, Kido HW et al (2016) Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis. J Biomed Opt 21:088001. https://doi.org/10.1117/1.jbo.21.8.088001

    Article  Google Scholar 

  30. Naterstad IF, Rossi RP, Marcos RL et al (2018) Comparison of photobiomodulation and anti-inflammatory drugs on tissue repair on collagenase-induced Achilles tendon inflammation in rats. Photomed Laser Surg 36:137–145. https://doi.org/10.1089/pho.2017.4364

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira R, Silva R, Folha RA et al (2015) Achilles tendon vascularization of proximal, medial, and distal portion before and after partial lesion in rats treated with phototherapy. Photomed Laser Surg 33:579–584. https://doi.org/10.1089/pho.2015.3974

    Article  PubMed  Google Scholar 

  32. Guerra FDR, Vieira CP, dos Santos de Almeida M, et al (2014) Pulsed LLLT improves tendon healing in rats: a biochemical, organizational, and functional evaluation. Lasers Med Sci 29:805–811. https://doi.org/10.1007/s10103-013-1406-2

    Article  Google Scholar 

  33. Ferreira Junior R, Barraviera B (2014) Arcabouço tridimensional para células tronco, processo de obtenção do mesmo e seu uso

  34. Ferreira Junior R, Barraviera B, Barraviera S (2014) Selante de fibrina para uso tópico, método de formação do mesmo e seu uso

  35. Karvat J, Antunes JS, Bernardino GR et al (2014) Effect of low-level LASER and neural mobilization on nociceptive threshold in experimental sciatica. Rev Dor 15:207–210. https://doi.org/10.5935/1806-0013.20140045

    Article  Google Scholar 

  36. Fearon A, Dahlstrom JE, Twin J et al (2014) The Bonar score revisited: region of evaluation significantly influences the standardized assessment of tendon degeneration. J Sci Med Sport 17:346–350. https://doi.org/10.1016/j.jsams.2013.07.008

    Article  PubMed  Google Scholar 

  37. Quinn KP, Golberg A, Broelsch GF et al (2015) An automated image processing method to quantify collagen fibre organization within cutaneous scar tissue. Exp Dermatol 24:78–80. https://doi.org/10.1111/exd.12553

    Article  PubMed  Google Scholar 

  38. Khan RJ, Carey Smith RL (2010) Surgical interventions for treating acute Achilles tendon ruptures. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd003674.pub4

    Article  PubMed  Google Scholar 

  39. Wilkins R, Bisson LJ (2012) Operative versus nonoperative management of acute Achilles tendon ruptures: a quantitative systematic review of randomized controlled trials. Am J Sports Med 40:2154–2160. https://doi.org/10.1177/0363546512453293

    Article  PubMed  Google Scholar 

  40. Aller MA, Arias JL, Sánchez-Patán F, Arias J (2006) The inflammatory response: an efficient way of life. Med Sci Monit 12:225–234

    Google Scholar 

  41. Arias JI, Aller MA, Arias J (2009) Surgical inflammation: a pathophysiological rainbow. J Transl Med 7:1–15. https://doi.org/10.1186/1479-5876-7-19

    Article  CAS  Google Scholar 

  42. Tim CR, Bossini PS, Kido HW et al (2016) Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: a microarray analysis. J Photochem Photobiol B Biol 154:8–15. https://doi.org/10.1016/j.jphotobiol.2015.10.028

    Article  CAS  Google Scholar 

  43. Pallotta RC, Bjordal JM, Frigo L et al (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27:71–78

    Article  Google Scholar 

  44. Boschi ES, Leite CE, Saciura VC et al (2008) Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 40:500–508. https://doi.org/10.1002/lsm.20658

    Article  PubMed  Google Scholar 

  45. Albertini R, Aimbire FS, Correa F et al (2004) Effects of different protocol doses of low power gallium–aluminum–arsenate (Ga–Al–As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B Biol 74:101–107. https://doi.org/10.1016/j.jphotobiol.2004.03.002

    Article  CAS  Google Scholar 

  46. Marcos RL, Leal Junior ECP, de Moura MF et al (2011) Infrared (810 nm) low-level laser therapy in rat Achilles tendinitis: a consistent alternative to drugs. Photochem Photobiol 87:1447–1452. https://doi.org/10.1111/j.1751-1097.2011.00999.x

    Article  CAS  PubMed  Google Scholar 

  47. Aimbire F, Albertine R, De Magalhães RG et al (2005) Effect of LLLT Ga-Al-As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers Med Sci 20:11–20. https://doi.org/10.1007/s10103-005-0339-9

    Article  CAS  PubMed  Google Scholar 

  48. Albertini R, Aimbire FSC, Correa FI et al (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw ooedema. J Photochem Photobiol B Biol 74:101–107. https://doi.org/10.1016/j.jphotobiol.2004.03.002

    Article  CAS  Google Scholar 

  49. Mooney E, Loh C, Pu LLQ (2009) The use of fibrin glue in plastic surgery. Plast Reconstr Surg 124:989–992. https://doi.org/10.1097/PRS.0b013e3181b039a3

    Article  CAS  PubMed  Google Scholar 

  50. Marchac D, Sa’ndor GKB, (1994) Face lifts and sprayed fibrin glue: an outcome analysis of 200 patients. Br J Plast Surg 47:306–309. https://doi.org/10.1016/0007-1226(94)90087-6

    Article  CAS  PubMed  Google Scholar 

  51. Fredricks S (2001) Comment on zones of adherence: role in minimizing and preventing contour deformities in liposuction. Plast Reconstr Surg 108:2100. https://doi.org/10.1097/00006534-200112000-00044

    Article  CAS  PubMed  Google Scholar 

  52. Lee KC, Park SK, Lee KS (1991) Neurosurgical application of fibrin adhesive. Yonsei Med J 32:53–57

    Article  CAS  Google Scholar 

  53. Yu MS, Jung MS, Kim BH et al (2018) Aerosolized fibrin sealant is effective for postoperative edema and ecchymosis in open rhinoplasty without osteotomy. J Oral Maxillofac Surg 76:2000.e1-2000.e8. https://doi.org/10.1016/j.joms.2018.05.019

    Article  Google Scholar 

  54. Yamada Y, Boo JS, Ozawa R et al (2003) Bone regeneration following injection of mesenchymal stem cells and fibrin glue with a biodegradable scaffold. J Cranio-Maxillofacial Surg 31:27–33. https://doi.org/10.1016/S1010-5182(02)00143-9

    Article  Google Scholar 

  55. Ferraro GC, Moraes JR, Shimano AC et al (2005) Effect of snake venom derived fibrin glue on the tendon healing in dogs: clinical and biomechanical study. J Venom Anim Toxins Incl Trop Dis 11:261–274. https://doi.org/10.1590/s1678-91992005000300005

    Article  CAS  Google Scholar 

  56. Solakoǧlu C, Mahiroǧullari M, Çakmak S et al (2010) Fibrin sealant in the treatment of acute ruptures of the Achilles tendon: long-term results. Eklem Hast ve Cerrahisi 21:124–129

    Google Scholar 

  57. Ferguson REH, Rinker B (2006) The use of a hydrogel sealant on flexor tendon repairs to prevent adhesion formation. Ann Plast Surg 56:54–58. https://doi.org/10.1097/01.sap.0000181666.00492.0e

    Article  CAS  PubMed  Google Scholar 

  58. Ferraro GC, Moraes JRE, Pereira GT, et al (2005) Clinical and morphological evaluation of snake venom derived fibrin glue on the tendon healing in dogs. J Venom Anim Toxins Incl Trop Dis 11:.https://doi.org/10.1590/S1678-91992005000400005

  59. Tempfer H, Traweger A (2015) Tendon vasculature in health and disease. Front Physiol 18(6):330. https://doi.org/10.3389/fphys.2015.00330

    Article  Google Scholar 

  60. Hamblin MR, Huang YY, Sharma SK, Carroll J (2011) Biphasic dose response in low level light therapy-an update. Dose-Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23:1. https://doi.org/10.1117/1.jbo.23.12.120901

    Article  CAS  PubMed  Google Scholar 

  62. Sommer AP, Pinheiro ALB, Mester AR et al (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg 19:29–33. https://doi.org/10.1089/104454701750066910

    Article  CAS  PubMed  Google Scholar 

  63. Martignago CCS, Tim CR, Assis L et al (2019) Comparison of two different laser photobiomodulation protocols on the viability of random skin flap in rats. Lasers Med Sci 34:1041–1047. https://doi.org/10.1007/s10103-018-2694-3

    Article  PubMed  Google Scholar 

  64. de Rosso MP, O, Rosa Júnior GM, Buchaim DV, et al (2017) Stimulation of morphofunctional repair of the facial nerve with photobiomodulation, using the end-to-side technique or a new heterologous fibrin sealant. J Photochem Photobiol B Biol 175:20–28. https://doi.org/10.1016/j.jphotobiol.2017.08.023

    Article  CAS  Google Scholar 

  65. de Oliveira Rosso MP, Oyadomari AT, Pomini KT et al (2020) Photobiomodulation therapy associated with heterologous fibrin biopolymer and bovine bone matrix helps to reconstruct long bones. Biomolecules 10:1–17. https://doi.org/10.3390/biom10030383

    Article  CAS  Google Scholar 

  66. de Oliveira Gonçalves JB, Buchaim DV, de Souza Bueno CR et al (2016) Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant. J Photochem Photobiol B Biol 162:663–668. https://doi.org/10.1016/j.jphotobiol.2016.07.023

    Article  CAS  Google Scholar 

  67. Voleti PB, Buckley MR, Soslowsky LJ (2012) Tendon healing: repair and regeneration. Annu Rev Biomed Eng 14:47–71. https://doi.org/10.1146/annurev-bioeng-071811-150122

    Article  CAS  PubMed  Google Scholar 

  68. Abbade LPF, Barraviera SRCS, Silvares MRC, Lima ABB de CO, Haddad GR, Gatti MAN, Medolago NB, Carneiro MTR, dos Santos LD, Ferreira RS, Barraviera B (2021) Treatment of chronic venous ulcers with heterologous fibrin sealant: A phase I/II clinical trial. Frontiers in Immunology 12

Download references

Acknowledgements

Special thanks are due to Aristides Pavan of Fazenda Céu Azul, Pereiras, SP, Brazil; the Center for the Study of Venoms and Venomous Animals (CEVAP) of São Paulo State University (UNESP), Guilherme Shin Iwamoto Haga, for enabling the publication of this paper.

Funding

The present study was supported by the National Council for Scientific and Technological Development, CNPq, Proc. No. 563582/2010–3 (BB) and CNPq Proc. No. 401170/2013–6 (BB); and the Coordination for the Improvement of Higher Education Personnel, CAPES, through Toxinology CAPES Call No. 063/2010, Proc. No. 23038.006285/2011–21, AUXPE Toxinology 1219 (BB). RSF Jr. is a CNPq PQ1C fellow researcher No. 303224/2018–5, FAPESP grant nº 2017/21851-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Roberta Tim.

Ethics declarations

Ethics approval

The present study was approved by the Ethics Committee on the Use of Animal under number 0326/2019 and conducted according to the international norms of ethics on animal experimentation (National Research Council, 1996).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas Dutra Júnior, E., Hidd, S.M.C.M., Amaral, M.M. et al. Treatment of partial injury of the calcaneus tendon with heterologous fibrin biopolymer and/or photobiomodulation in rats. Lasers Med Sci 37, 971–981 (2022). https://doi.org/10.1007/s10103-021-03341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03341-x

Keywords

Navigation