Skip to main content
Log in

Revealing the Effect of Skull Deformation on Intracranial Pressure Variation During the Direct Interaction Between Blast Wave and Surrogate Head

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intracranial pressure (ICP) during the interaction between blast wave and the head is a crucial evaluation criterion for blast-induced traumatic brain injury (bTBI). ICP variation is mainly induced by the blast wave transmission and skull deformation. However, how the skull deformation influences the ICP remains unclear, which is meaningful for mitigating bTBI. In this study, both experimental and numerical models are developed to elucidate the effect of skull deformation on ICP variation. Firstly, we performed the shock tube experiment of the high-fidelity surrogate head to measure the ICP, the blast overpressure, and the skull surface strain of specific positions. The results show that the ICP profiles of all measured points show oscillations with positive and negative change, and the variation is consistent with the skull surface strain. Further numerical analysis reveals that when the blast wave reaches the measured point, the peak overpressure transmits directly through the skull to the brain, forming the local positive ICP peak, and the impulse induces the local inward deformation of the skull. As the peak overpressure passes through, the blast impulse impacts the nearby skull supported by the soft and incompressible brain tissue and extrudes the skull outward in the initial position. The inward and outward skull deformation leads to the oscillation of ICP. These numerical analyses agree with experimental results, which explain the appearance of negative and positive ICP peaks and the synchronization of negative ICP with surface strain. The study has implications for medical injury diagnosis and protective equipment design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, J. D., Jr. Fundamentals of Aerodynamics. New York: Tata McGraw-Hill Education, 2010

    Google Scholar 

  2. Bass, C. R., M. B. Panzer, K. A. Rafaels, G. Wood, J. Shridharani, and B. Capehart. Brain injuries from blast. Ann. Biomed. Eng. 40:185–202, 2012

    Article  PubMed  Google Scholar 

  3. Bolander, R., B. Mathie, C. Bir, D. Ritzel, and P. VandeVord. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 39:2550–2559, 2011

    Article  PubMed  Google Scholar 

  4. Bull, A. M., J. Clasper, and P. F. Mahoney. Blast Injury Science and Engineering. Switzerland: Springer, 2016

    Book  Google Scholar 

  5. Carlsen, R. W., A. L. Fawzi, Y. Wan, H. Kesari, and C. Franck. A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis. Brain Multiphys.2:100024, 2021

    Article  Google Scholar 

  6. Chafi, M., G. Karami, and M. Ziejewski. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38:490–504, 2010

    Article  CAS  PubMed  Google Scholar 

  7. Chavko, M., W. A. Koller, W. K. Prusaczyk, and R. M. McCarron. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods. 159:277–281, 2007

    Article  PubMed  Google Scholar 

  8. Clemedson, C. J. Shock wave transmission to the central nervous system. Acta Physiol. Scand. 37:204–214, 1956

    Article  CAS  PubMed  Google Scholar 

  9. Clemedson, C. J., and H. Pettersson. Propagation of a high explosive air shock wave through different parts of an animal body. Am. J. Physiol.-Legacy Content. 184:119–126, 1955

    Article  Google Scholar 

  10. Courtney, A., and M. Courtney. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Front. Neurol. 6:221, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Courtney, E. C., A. Courtney, and M. Courtney. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel. Defence Technol. 10:245–250, 2014

    Article  Google Scholar 

  12. Crowley, J. S., F. T. Brozoski, S. M. Duma, and E. A. Kennedy. Development of the facial and ocular countermeasures safety (FOCUS) headform. Aviat. Space Environ. Med. 80:831, 2009

    Article  PubMed  Google Scholar 

  13. Dal Cengio Leonardi, A., N. J. Keane, K. Hay, A. G. Ryan, C. A. Bir, and P. J. VandeVord. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves. Ann. Biomed. Eng. 41:2488–2500, 2013

    Article  PubMed  Google Scholar 

  14. Defense and V. B. I. Center. DoD Worldwide Numbers for Traumatic Brain Injury. Washington, DC: Defense and Veterans Brain Injury Cent, 2011

    Google Scholar 

  15. Estrada, J. B., H. C. Cramer III., M. T. Scimone, S. Buyukozturk, and C. Franck. Neural cell injury pathology due to high-rate mechanical loading. Brain Multiphys.2:100034, 2021

    Article  Google Scholar 

  16. Falland-Cheung, L., J. N. Waddell, K. C. Li, D. Tong, and P. Brunton. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model. J. Mech. Behav. Biomed. Mater. 68:303–307, 2017

    Article  CAS  PubMed  Google Scholar 

  17. Feng, K., L. Zhang, X. Jin, C. Chen, S. Kallakuri, T. Saif, J. Cavanaugh, and A. King. Biomechanical responses of the brain in swine subject to free-field blasts. Front. Neurol. 7:179, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fievisohn, E., Z. Bailey, A. Guettler, and P. VandeVord. Primary blast brain injury mechanisms: current knowledge, limitations, and future directions. J. Biomech. Eng.140:020806, 2018

    Article  Google Scholar 

  19. Foster, J. K., J. O. Kortge, and M. J. Wolanin. Hybrid III—a biomechanically-based crash test dummy. SAE Trans. 1977. https://doi.org/10.4271/770938

    Article  Google Scholar 

  20. Ganpule, S., A. Alai, E. Plougonven, and N. Chandra. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12:511–531, 2013

    Article  CAS  PubMed  Google Scholar 

  21. Ganpule, S., N. P. Daphalapurkar, K. T. Ramesh, A. K. Knutsen, D. L. Pham, P. V. Bayly, and J. L. Prince. A three-dimensional computational human head model that captures live human brain dynamics. J. Neurotrauma. 34:2154–2166, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ganpule, S., L. Gu, A. Alai, and N. Chandra. Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput. Methods Biomech. Biomed. Eng. 15:1233–1244, 2012

    Article  CAS  Google Scholar 

  23. Ganpule, S., R. Salzar, B. Perry, and N. Chandra. Role of helmets in blast mitigation: insights from experiments on PMHS surrogate. Int. J. Exp. Comput. Biomech. 4:13–31, 2016

    Article  Google Scholar 

  24. Garimella, H. T., R. H. Kraft, and A. J. Przekwas. Do blast induced skull flexures result in axonal deformation? PLoS ONE.13:e0190881, 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Goldstein, L., A. Fisher, C. Tagge, X. Zhang, L. Velisek, J. Sullivan, C. Upreti, J. Kracht, M. Ericsson, and M. Wojnarowicz. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134ra160, 2012

    Google Scholar 

  26. Griffin, M., B. Leung, Y. Premakumar, M. Szarko, and P. Butler. Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. J. Otolaryngol.-Head Neck Surg. 46:1–6, 2017

    Article  Google Scholar 

  27. Gunko, V. M., I. N. Savina, and S. V. Mikhalovsky. Properties of water bound in hydrogels. Gels. 3:37, 2017

    Article  CAS  Google Scholar 

  28. Gupta, R. K., and A. Przekwas. Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4:59, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gupta, R. K., X. G. Tan, M. R. Somayaji, and A. J. Przekwas. Multiscale modelling of blast-induced TBI mechanobiology-from body to neuron to molecule. Defence Life Sci. J. 2:3–13, 2017

    Article  Google Scholar 

  30. Hua, Y., P. Kumar Akula, L. Gu, J. Berg, and C. A. Nelson. Experimental and numerical investigation of the mechanism of blast wave transmission through a surrogate head. J. Comput. Nonlinear Dyn. 9:1031010, 2014

    Google Scholar 

  31. Iwaskiw, A., K. Ott, R. Armiger, A. Wickwire, V. Alphonse, L. Voo, C. Carneal, and A. Merkle. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading. Shock Waves. 28:63–83, 2018

    Article  Google Scholar 

  32. Kong, L.-Z., R.-L. Zhang, S.-H. Hu, and J.-B. Lai. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Militar. Med. Res. 9:1–18, 2022

    Article  Google Scholar 

  33. Lei, J., Z. Zhou, and Z. Liu. Side chains and the insufficient lubrication of water in polyacrylamide hydrogel—a new insight. Polymers. 11:1845, 2019

    Article  CAS  PubMed Central  Google Scholar 

  34. Leonardi, A. D. C., C. A. Bir, D. V. Ritzel, and P. J. VandeVord. Intracranial pressure increases during exposure to a shock wave. J. Neurotrauma. 28:85–94, 2011

    Article  PubMed  Google Scholar 

  35. Li, J., W. Li, X. Hong, J. Yu, and J. Zhu. Blast wave characteristics of multi-layer composite charge: Theoretical analysis, numerical simulation, and experimental validation. Defence Technol. 2021. https://doi.org/10.1016/j.dt.2021.11.012

    Article  Google Scholar 

  36. Li, J., T. Ma, C. Huang, X. Huang, Y. Kang, Z. Long, and M. Liu. Protective mechanism of helmet under far-field shock wave. Int. J. Impact Eng.143:103617, 2020

    Article  Google Scholar 

  37. Liu, Y., X. Qiu, H. Ma, W. Fu, and T. Yu. A study of woodpecker’s pecking process and the impact response of its brain. Int. J. Impact Eng. 108:263–271, 2017

    Article  Google Scholar 

  38. Logsdon, A. F., B. P. Lucke-Wold, R. C. Turner, J. D. Huber, C. L. Rosen, and J. W. Simpkins. Role of microvascular disruption in brain damage from traumatic brain injury. Compr. Physiol. 5:1147, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu, J., K. C. Ng, G. Ling, J. Wu, D. J. F. Poon, E. M. Kan, M. H. Tan, Y. J. Wu, P. Li, and S. Moochhala. Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J. Neurotrauma. 29:1434–1454, 2012

    Article  PubMed  Google Scholar 

  40. Maas, A. I., D. K. Menon, P. D. Adelson, N. Andelic, M. J. Bell, A. Belli, P. Bragge, A. Brazinova, A. Büki, and R. M. Chesnut. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. The Lancet Neurol. 16:987–1048, 2017

    Article  PubMed  Google Scholar 

  41. Mao, H., G. Unnikrishnan, V. Rakesh, and J. Reifman. Untangling the effect of head acceleration on brain responses to blast waves. J. Biomech. Eng.137:124502, 2015

    Article  PubMed  Google Scholar 

  42. Moss, W. C., M. J. King, and E. G. Blackman. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett.103:108702, 2009

    Article  PubMed  CAS  Google Scholar 

  43. Nie, X., B. Sanborn, T. Weerasooriya, and W. Chen. High-rate bulk and shear responses of bovine brain tissue. Int. J. Impact Eng. 53:56–61, 2013

    Article  Google Scholar 

  44. Oros-Peusquens, A.-M., R. Loução, Z. Abbas, V. Gras, M. Zimmermann, and N. Shah. A single-scan, rapid whole-brain protocol for quantitative water content mapping with neurobiological implications. Front. Neurol. 2019. https://doi.org/10.3389/fneur.2019.01333

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ouellet, S., C. Bir, and A. Bouamoul. Direct Comparison of the Primary Blast Response of a Physical Head Model with Post-Mortem Human Subjects. Ottawa: Defence Research and Development Canada-Valcartier Research Center Quebec, 2014

    Google Scholar 

  46. Ouellet, S., and M. Philippens. The multi-modal responses of a physical head model subjected to various blast exposure conditions. Shock Waves. 28:19–36, 2018

    Article  Google Scholar 

  47. Panzer, M. B., B. S. Myers, B. P. Capehart, and C. R. Bass. Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40:1530–1544, 2012

    Article  PubMed  Google Scholar 

  48. Rahaman, M. M., W. Fang, A. L. Fawzi, Y. Wan, and H. Kesari. An accelerometer-only algorithm for determining the acceleration field of a rigid body, with application in studying the mechanics of mild traumatic brain injury. J. Mech. Phys. Solids.143:104014, 2020

    Article  Google Scholar 

  49. Roberts, J., T. Harrigan, E. Ward, T. Taylor, M. Annett, and A. Merkle. Human head–neck computational model for assessing blast injury. J. Biomech. 45:2899–2906, 2012

    Article  CAS  PubMed  Google Scholar 

  50. Salzar, R. S., D. Treichler, A. Wardlaw, G. Weiss, and J. Goeller. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads. J. Neurotrauma. 34:1589–1602, 2017

    Article  PubMed  Google Scholar 

  51. Selvan, V., S. Ganpule, N. Kleinschmit, and N. Chandra. Blast wave loading pathways in heterogeneous material systems–experimental and numerical approaches. J. Biomech. Eng.135:061002, 2013

    Article  Google Scholar 

  52. Singh, D., and D. Cronin. Multi-scale modeling of head kinematics and brain tissue response to blast exposure. Ann. Biomed. Eng. 47:1993–2004, 2019

    Article  PubMed  Google Scholar 

  53. Skotak, M., F. Wang, A. Alai, A. Holmberg, S. Harris, R. C. Switzer, and N. Chandra. Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures. J. Neurotrauma. 30:1147–1160, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sundar, S., and A. Ponnalagu. Biomechanical analysis of head subjected to blast waves and the role of combat protective headgear under blast loading: a review. J. Biomech. Eng.143:100801, 2021

    Article  PubMed  Google Scholar 

  55. Sutar, S., and S. Ganpule. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech. Model. Mechanobiol. 19:875–892, 2020

    Article  PubMed  Google Scholar 

  56. Tse, K. M., S. P. Lim, V. B. C. Tan, and H. P. Lee. A review of head injury and finite element head models. Am. J. Eng. Technol. Soc. 1:28–52, 2014

    Google Scholar 

  57. Vogel, E. W. Pathobiological Mechanisms and Treatment of Electrophysiological Dysfunction Following Primary Blast-Induced Traumatic Brain Injury. New York: Columbia University, 2017

    Google Scholar 

  58. Wang, Z., A. A. Volinsky, and N. D. Gallant. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131:41050, 2014

    Article  CAS  Google Scholar 

  59. Yang, C., T. Yin, and Z. Suo. Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids. 131:43–55, 2019

    Article  CAS  Google Scholar 

  60. Zhang, J., F. A. Pintar, N. Yoganandan, T. A. Gennarelli, and S. F. Son. Experimental study of blast-induced traumatic brain injury using a physical head model. Stapp Car Crash J. 53:215–227, 2009

    PubMed  Google Scholar 

  61. Zhu, F., C. C. Chou, K. H. Yang, and A. I. King. A theoretical analysis of stress wave propagation in the head under primary blast loading. Proc. Inst. Mech. Eng. Part H. 228:439–445, 2014

    Article  Google Scholar 

  62. Zhu, F., C. Wagner, A. Dal Cengio Leonardi, X. Jin, P. VandeVord, C. Chou, K. H. Yang, and A. I. King. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomech. Model. Mechanobiol. 11:341–353, 2012

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Science Challenge Project, No. TZ2018002, National Natural Science Foundation of China, under Grant Nos. 11972205, 11921002 and 11972210, the National Key Research Development Program of China (No. 2020-JCJQ-ZD-254).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanli Liu.

Additional information

Associate Editor Jillian Urban oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Li, Z., Wang, P. et al. Revealing the Effect of Skull Deformation on Intracranial Pressure Variation During the Direct Interaction Between Blast Wave and Surrogate Head. Ann Biomed Eng 50, 1038–1052 (2022). https://doi.org/10.1007/s10439-022-02982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02982-5

Keywords

Navigation