Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril

  • Shima Mehrvar
  • Mette Funding la Cour
  • Meetha Medhora
  • Amadou K. S. CamaraEmail author
  • Mahsa RanjiEmail author


The kidney is one of the most radiosensitive organs; it is the primary dose-limiting organ in radiotherapies for upper abdominal cancers. The role of mitochondrial redox state in the development and treatment of renal radiation injury, however, remains ill-defined. This study utilizes 3D optical cryo-imaging to quantify renal mitochondrial bioenergetics dysfunction after 13 Gy leg-out partial body irradiation (PBI). Furthermore, the mitigating effects of lisinopril (lisino), an anti-hypertensive angiotensin converting enzyme inhibitor, is assessed in renal radiation-induced injuries. Around day 150 post-irradiation, kidneys are harvested for cryo-imaging. The 3D images of the metabolic indices (NADH, nicotinamide adenine dinucleotide, and FAD, flavin adenine dinucleotide) are acquired, and the mitochondrial redox states of the irradiated and irradiated + lisino kidneys are quantified by calculating the volumetric mean redox ratio (NADH/FAD). PBI oxidized renal mitochondrial redox state by 78%. The kidneys from the irradiated + lisino rats showed mitigation of mitochondrial redox state by 93% compared to the PBI group. The study provides evidence for an altered bioenergetics and energy metabolism in the rat model of irradiation-induced kidney damage. In addition, the results suggest that lisinopril mitigates irradiation damage by attenuating the oxidation of mitochondria leading to increase redox ratio.


Mitochondria NADH FAD Medulla X-ray Optical cryo-imaging Redox state Partial body Irradiation 



We thank Brian Fish, Jayashree Narayanan, Tracy Gasperetti, and James Heisner for excellent animal care, irradiation, dosimetry and tissue harvesting. We also are thankful for funding support from UWM RGI 101X290 and 101 × 397, NIAID R01-101898, U01-107305, U01AI33594, Department of Radiation Oncology, Cardiovascular and Cancer Centers at MCW and NIH grant R01HL116530.

Conflict of interest

None Declared.


  1. 1.
    Agarwal, B., R. K. Dash, D. F. Stowe, Z. J. Bosnjak, and A. K. Camara. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochim Biophys Acta Bioenerg 354–365:2014, 1837.Google Scholar
  2. 2.
    Aldakkak, M., A. K. Camara, J. S. Heisner, M. Yang, and D. F. Stowe. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol. Res. 64:381–392, 2011.CrossRefGoogle Scholar
  3. 3.
    Baskar, R., K. A. Lee, R. Yeo, and K.-W. Yeoh. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193, 2012.CrossRefGoogle Scholar
  4. 4.
    Brandes, R., and D. M. Bers. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys. J . 71:1024–1035, 1996.CrossRefGoogle Scholar
  5. 5.
    Burdelya, L. G., V. I. Krivokrysenko, T. C. Tallant, E. Strom, A. S. Gleiberman, D. Gupta, O. V. Kurnasov, F. L. Fort, A. L. Osterman, and J. A. DiDonato. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230, 2008.CrossRefGoogle Scholar
  6. 6.
    Camara, A. K., E. J. Lesnefsky, and D. F. Stowe. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid. Redox Signal. 13:279–347, 2010.CrossRefGoogle Scholar
  7. 7.
    Cassady, J. R. Clinical radiation nephropathy. Int. J. Radiat. Oncol. Biol. Phys. 31:1249–1256, 1995.CrossRefGoogle Scholar
  8. 8.
    Cohen, J. J. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism? Am. J. Physiol. 236:F423–433, 1979.Google Scholar
  9. 9.
    Cohen, E. P., M. Bedi, A. A. Irving, E. Jacobs, R. Tomic, J. Klein, C. A. Lawton, and J. E. Moulder. Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int. J. Radiat. Oncol. Biol. Phys. 83:292–296, 2012.CrossRefGoogle Scholar
  10. 10.
    Cohen, E. P., B. L. Fish, J. D. Imig, and J. E. Moulder. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. J. Radiat. Oncol. 5:1–8, 2016.CrossRefGoogle Scholar
  11. 11.
    Cowley, A. W., C. Yang, N. N. Zheleznova, A. Staruschenko, T. Kurth, L. Rein, V. Kumar, K. Sadovnikov, A. Dayton, M. Hoffman, R. P. Ryan, M. M. Skelton, F. Salehpour, M. Ranji, and A. Geurts. Evidence of the importance of Nox4 in production of hypertension in dahl salt-sensitive rats. Hypertension 67:440–450, 2016.CrossRefGoogle Scholar
  12. 12.
    Dawson, L. A., B. D. Kavanagh, A. C. Paulino, S. K. Das, M. Miften, X. A. Li, C. Pan, R. K. Ten Haken, and T. E. Schultheiss. Radiation-associated kidney injury. Int. J. Radiat. Oncol. Biol. Phys. 76:S108–S115, 2010.CrossRefGoogle Scholar
  13. 13.
    Epstein, F. H. Oxygen and renal metabolism. Kidney Int. 51:381–385, 1997.CrossRefGoogle Scholar
  14. 14.
    Estabrook, R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal. Biochem. 4:231–245, 1962.CrossRefGoogle Scholar
  15. 15.
    Fish, B. L., F. Gao, J. Narayanan, C. Bergom, E. R. Jacobs, E. P. Cohen, J. E. Moulder, C. M. Orschell, and M. Medhora. Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs. Health Phys. 111:410–419, 2016.CrossRefGoogle Scholar
  16. 16.
    Fish, B. L., F. Gao, J. Narayanan, C. Bergom, E. R. Jacobs, E. P. Cohen, J. E. Moulder, C. M. Orschell, and M. Medhora. Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs. Health Phys. 111:410–419, 2016.CrossRefGoogle Scholar
  17. 17.
    Fliedner, T., H. Dorr, and V. Meineke. Multi-organ involvement as a pathogenetic principle of the radiation syndromes: a study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. Br. J. Radiol. 1:1–8, 2005.CrossRefGoogle Scholar
  18. 18.
    Gao, F., B. L. Fish, J. E. Moulder, E. R. Jacobs, and M. J. R. Medhora. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat. Res. 180:546–552, 2013.CrossRefGoogle Scholar
  19. 19.
    Geraci, J., M. Sun, and M. Mariano. Amelioration of radiation nephropathy in rats by postirradiation treatment with dexamethasone and/or captopril. Radiat. Res. 143:58–68, 1995.CrossRefGoogle Scholar
  20. 20.
    Hafer, N., D. Cassatt, A. DiCarlo, N. Ramakrishnan, J. Kaminski, M.-K. Norman, B. Maidment, and R. J. H. Hatchett. NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Phys. 98:903–905, 2010.CrossRefGoogle Scholar
  21. 21.
    Hansell, P., W. J. Welch, R. C. Blantz, and F. Palm. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin. Exp. Pharmacol. Physiol. 40:123–137, 2013.CrossRefGoogle Scholar
  22. 22.
    Hur, K. Y., and M. S. Lee. New mechanisms of metformin action: focusing on mitochondria and the gut. J. Diabetes Investig. 6:600–609, 2015.CrossRefGoogle Scholar
  23. 23.
    Jacobs, E. R., J. Narayanan, B. L. Fish, F. Gao, L. M. Harmann, C. Bergom, T. Gasperetti, J. L. Strande, and M. J. H. Medhora. Cardiac remodeling and reversible pulmonary hypertension during pneumonitis in rats after 13-Gy partial-body irradiation with minimal bone marrow sparing: effect of lisinopril. Health Phys. 116(4):558–565, 2019.CrossRefGoogle Scholar
  24. 24.
    Katz, L. A., A. P. Koretsky, and R. S. Balaban. Respiratory control in the glucose perfused heart A 31P NMR and NADH fluorescence study. FEBS Lett. 221:270–276, 1987.CrossRefGoogle Scholar
  25. 25.
    Kharofa, J., E. P. Cohen, R. Tomic, Q. Xiang, and E. Gore. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 84:238–243, 2012.CrossRefGoogle Scholar
  26. 26.
    Ki, Y., W. Kim, Y. H. Kim, D. Kim, J. S. Bae, D. Park, H. Jeon, J. H. Lee, J. Lee, and J. Nam. Effect of coenzyme Q10 on radiation nephropathy in rats. J. Korean Med. Sci. 32:757–763, 2017.CrossRefGoogle Scholar
  27. 27.
    la Cour, M. F., S. Mehrvar, J. S. Heisner, M. M. Motlagh, M. Medhora, M. Ranji, and A. K. S. Camara. Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury. J. Biomed. Opt. 23:1–9, 2018.Google Scholar
  28. 28.
    la Cour, M. F., S. Mehrvar, J. Kim, A. Martin, M. A. Zimmerman, J. C. Hong, and M. Ranji. Optical imaging for the assessment of hepatocyte metabolic state in ischemia and reperfusion injuries. Biomed. Opt. Express 8:4419–4426, 2017.CrossRefGoogle Scholar
  29. 29.
    Lancaster, S. G., and P. A. J. D. Todd. Lisinopril 35:646–669, 1988.Google Scholar
  30. 30.
    Lenarczyk, M., E. P. Cohen, B. L. Fish, A. A. Irving, M. Sharma, C. D. Driscoll, and J. E. Moulder. Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat. Res. 171:164–172, 2009.CrossRefGoogle Scholar
  31. 31.
    Lewis, S. A., T. Takimoto, S. Mehrvar, H. Higuchi, A.-L. Doebley, G. Stokes, N. Sheibani, S. Ikeda, M. Ranji, and A. J. P. Ikeda. The effect of Tmem135 overexpression on the mouse heart. PLoS ONE 13:e0201986, 2018.CrossRefGoogle Scholar
  32. 32.
    Liu, Q., G. Grant, and T. Vo-Dinh. Investigation of synchronous fluorescence method in multicomponent analysis in tissue. IEEE J. Sel. Top. Quantum Electron. 16:927–940, 2010.CrossRefGoogle Scholar
  33. 33.
    MacVittie, T. J., A. Bennett, C. Booth, M. Garofalo, G. Tudor, A. Ward, T. Shea-Donohue, D. Gelfond, E. McFarland, and W. Jackson, III. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation. Health Phys. 103:427, 2012.CrossRefGoogle Scholar
  34. 34.
    Medhora, M., F. Gao, T. Gasperetti, J. Narayanan, A. H. Khan, E. R. Jacobs, and B. L. Fish. Delayed effects of acute radiation exposure (Deare) in Juvenile and old rats: mitigation by lisinopril. Health Phys. 116(4):529–545, 2019.CrossRefGoogle Scholar
  35. 35.
    Medhora, M., F. Gao, Q. Wu, R. C. Molthen, E. R. Jacobs, J. E. Moulder, and B. L. Fish. Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat. Res. 182:545–555, 2014.CrossRefGoogle Scholar
  36. 36.
    Moulder, J. E., E. P. Cohen, and B. L. Fish. Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int. J. Radiat. Biol. 90:762–768, 2014.CrossRefGoogle Scholar
  37. 37.
    Moulder, J. E., E. P. Cohen, and B. L. Fish. Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int. J. Radiat. Biol. 90:762–768, 2014.CrossRefGoogle Scholar
  38. 38.
    Moulder, J. E., and B. L. Fish. Effect of sequencing on combined toxicity of renal irradiation and cisplatin. NCI Monogr. 6:35–39, 1988.Google Scholar
  39. 39.
    Nuutinen, E. M. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res. Cardiol. 79:49–58, 1984.CrossRefGoogle Scholar
  40. 40.
    Okunieff, P., Y. Chen, D. J. Maguire, and A. K. Huser. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev. 27:363–374, 2008.CrossRefGoogle Scholar
  41. 41.
    Robbins, M. E., R. S. Jaenke, T. Bywaters, S. J. Golding, M. Rezvani, E. Whitehouse, and J. W. Hopewell. Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat. Res. 135:351–364, 1993.CrossRefGoogle Scholar
  42. 42.
    Robbins, M., and W. Zhao. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int. J. Radiat. Biol. 80:251–259, 2004.CrossRefGoogle Scholar
  43. 43.
    Robbins, M. E., W. Zhao, C. S. Davis, S. Toyokuni, and S. M. Bonsib. Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 33:133–141, 2002.CrossRefGoogle Scholar
  44. 44.
    Sepehr, R., K. Staniszewski, S. Maleki, E. R. Jacobs, S. Audi, and M. Ranji. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. J. Biomed. Opt. 17:0460101–0460107, 2012.CrossRefGoogle Scholar
  45. 45.
    Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48:9–31, 1986.CrossRefGoogle Scholar
  46. 46.
    Sosunov, S. A., X. Ameer, Z. V. Niatsetskaya, I. Utkina-Sosunova, V. I. Ratner, and V. S. Ten. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury. PLoS ONE 10:e0120456, 2015.CrossRefGoogle Scholar
  47. 47.
    Stowe, D. F., and A. K. Camara. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 11:1373–1414, 2009.CrossRefGoogle Scholar
  48. 48.
    Vidt, D. G., E. L. Bravo, and F. M. N. J. E. J. O. M. Fouad. Captopri 306:214–219, 1982.Google Scholar
  49. 49.
    Watanabe Nemoto, M., K. Isobe, G. Togasaki, A. Kanazawa, M. Kurokawa, M. Saito, R. Harada, H. Kobayashi, H. Ito, and T. Uno. Delayed renal dysfunction after total body irradiation in pediatric malignancies. J. Radiat. Res. 55:996–1001, 2014.CrossRefGoogle Scholar
  50. 50.
    Williams, J. P., S. L. Brown, G. E. Georges, M. Hauer-Jensen, R. P. Hill, A. K. Huser, D. G. Kirsch, T. J. MacVittie, K. A. Mason, M. M. Medhora, J. E. Moulder, P. Okunieff, M. F. Otterson, M. E. Robbins, J. B. Smathers, and W. H. McBride. Animal Models for Medical Countermeasures to Radiation Exposure. Radiat. Res. 173:557–578, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Biophotonics LabUniversity of Wisconsin MilwaukeeMilwaukeeUSA
  2. 2.Department of Radiation Oncology and Cardiovascular Research CenterMedical College of WisconsinMilwaukeeUSA
  3. 3.Department of Anesthesiology and Cardiovascular Research CenterMedical College of WisconsinMilwaukeeUSA
  4. 4.Department of PhysiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations