Skip to main content
Log in

Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The kidney is one of the most radiosensitive organs; it is the primary dose-limiting organ in radiotherapies for upper abdominal cancers. The role of mitochondrial redox state in the development and treatment of renal radiation injury, however, remains ill-defined. This study utilizes 3D optical cryo-imaging to quantify renal mitochondrial bioenergetics dysfunction after 13 Gy leg-out partial body irradiation (PBI). Furthermore, the mitigating effects of lisinopril (lisino), an anti-hypertensive angiotensin converting enzyme inhibitor, is assessed in renal radiation-induced injuries. Around day 150 post-irradiation, kidneys are harvested for cryo-imaging. The 3D images of the metabolic indices (NADH, nicotinamide adenine dinucleotide, and FAD, flavin adenine dinucleotide) are acquired, and the mitochondrial redox states of the irradiated and irradiated + lisino kidneys are quantified by calculating the volumetric mean redox ratio (NADH/FAD). PBI oxidized renal mitochondrial redox state by 78%. The kidneys from the irradiated + lisino rats showed mitigation of mitochondrial redox state by 93% compared to the PBI group. The study provides evidence for an altered bioenergetics and energy metabolism in the rat model of irradiation-induced kidney damage. In addition, the results suggest that lisinopril mitigates irradiation damage by attenuating the oxidation of mitochondria leading to increase redox ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agarwal, B., R. K. Dash, D. F. Stowe, Z. J. Bosnjak, and A. K. Camara. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes. Biochim Biophys Acta Bioenerg 354–365:2014, 1837.

    Google Scholar 

  2. Aldakkak, M., A. K. Camara, J. S. Heisner, M. Yang, and D. F. Stowe. Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol. Res. 64:381–392, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baskar, R., K. A. Lee, R. Yeo, and K.-W. Yeoh. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brandes, R., and D. M. Bers. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys. J . 71:1024–1035, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burdelya, L. G., V. I. Krivokrysenko, T. C. Tallant, E. Strom, A. S. Gleiberman, D. Gupta, O. V. Kurnasov, F. L. Fort, A. L. Osterman, and J. A. DiDonato. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320:226–230, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camara, A. K., E. J. Lesnefsky, and D. F. Stowe. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid. Redox Signal. 13:279–347, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cassady, J. R. Clinical radiation nephropathy. Int. J. Radiat. Oncol. Biol. Phys. 31:1249–1256, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, J. J. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism? Am. J. Physiol. 236:F423–433, 1979.

    CAS  PubMed  Google Scholar 

  9. Cohen, E. P., M. Bedi, A. A. Irving, E. Jacobs, R. Tomic, J. Klein, C. A. Lawton, and J. E. Moulder. Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int. J. Radiat. Oncol. Biol. Phys. 83:292–296, 2012.

    Article  PubMed  Google Scholar 

  10. Cohen, E. P., B. L. Fish, J. D. Imig, and J. E. Moulder. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. J. Radiat. Oncol. 5:1–8, 2016.

    Article  CAS  Google Scholar 

  11. Cowley, A. W., C. Yang, N. N. Zheleznova, A. Staruschenko, T. Kurth, L. Rein, V. Kumar, K. Sadovnikov, A. Dayton, M. Hoffman, R. P. Ryan, M. M. Skelton, F. Salehpour, M. Ranji, and A. Geurts. Evidence of the importance of Nox4 in production of hypertension in dahl salt-sensitive rats. Hypertension 67:440–450, 2016.

    Article  CAS  PubMed  Google Scholar 

  12. Dawson, L. A., B. D. Kavanagh, A. C. Paulino, S. K. Das, M. Miften, X. A. Li, C. Pan, R. K. Ten Haken, and T. E. Schultheiss. Radiation-associated kidney injury. Int. J. Radiat. Oncol. Biol. Phys. 76:S108–S115, 2010.

    Article  PubMed  Google Scholar 

  13. Epstein, F. H. Oxygen and renal metabolism. Kidney Int. 51:381–385, 1997.

    Article  CAS  PubMed  Google Scholar 

  14. Estabrook, R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal. Biochem. 4:231–245, 1962.

    Article  CAS  PubMed  Google Scholar 

  15. Fish, B. L., F. Gao, J. Narayanan, C. Bergom, E. R. Jacobs, E. P. Cohen, J. E. Moulder, C. M. Orschell, and M. Medhora. Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs. Health Phys. 111:410–419, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fish, B. L., F. Gao, J. Narayanan, C. Bergom, E. R. Jacobs, E. P. Cohen, J. E. Moulder, C. M. Orschell, and M. Medhora. Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs. Health Phys. 111:410–419, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fliedner, T., H. Dorr, and V. Meineke. Multi-organ involvement as a pathogenetic principle of the radiation syndromes: a study involving 110 case histories documented in SEARCH and classified as the bases of haematopoietic indicators of effect. Br. J. Radiol. 1:1–8, 2005.

    Article  Google Scholar 

  18. Gao, F., B. L. Fish, J. E. Moulder, E. R. Jacobs, and M. J. R. Medhora. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat. Res. 180:546–552, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geraci, J., M. Sun, and M. Mariano. Amelioration of radiation nephropathy in rats by postirradiation treatment with dexamethasone and/or captopril. Radiat. Res. 143:58–68, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. Hafer, N., D. Cassatt, A. DiCarlo, N. Ramakrishnan, J. Kaminski, M.-K. Norman, B. Maidment, and R. J. H. Hatchett. NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Phys. 98:903–905, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Hansell, P., W. J. Welch, R. C. Blantz, and F. Palm. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin. Exp. Pharmacol. Physiol. 40:123–137, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hur, K. Y., and M. S. Lee. New mechanisms of metformin action: focusing on mitochondria and the gut. J. Diabetes Investig. 6:600–609, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobs, E. R., J. Narayanan, B. L. Fish, F. Gao, L. M. Harmann, C. Bergom, T. Gasperetti, J. L. Strande, and M. J. H. Medhora. Cardiac remodeling and reversible pulmonary hypertension during pneumonitis in rats after 13-Gy partial-body irradiation with minimal bone marrow sparing: effect of lisinopril. Health Phys. 116(4):558–565, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katz, L. A., A. P. Koretsky, and R. S. Balaban. Respiratory control in the glucose perfused heart A 31P NMR and NADH fluorescence study. FEBS Lett. 221:270–276, 1987.

    Article  CAS  PubMed  Google Scholar 

  25. Kharofa, J., E. P. Cohen, R. Tomic, Q. Xiang, and E. Gore. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 84:238–243, 2012.

    Article  CAS  PubMed  Google Scholar 

  26. Ki, Y., W. Kim, Y. H. Kim, D. Kim, J. S. Bae, D. Park, H. Jeon, J. H. Lee, J. Lee, and J. Nam. Effect of coenzyme Q10 on radiation nephropathy in rats. J. Korean Med. Sci. 32:757–763, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. la Cour, M. F., S. Mehrvar, J. S. Heisner, M. M. Motlagh, M. Medhora, M. Ranji, and A. K. S. Camara. Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury. J. Biomed. Opt. 23:1–9, 2018.

    PubMed  Google Scholar 

  28. la Cour, M. F., S. Mehrvar, J. Kim, A. Martin, M. A. Zimmerman, J. C. Hong, and M. Ranji. Optical imaging for the assessment of hepatocyte metabolic state in ischemia and reperfusion injuries. Biomed. Opt. Express 8:4419–4426, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lancaster, S. G., and P. A. J. D. Todd. Lisinopril 35:646–669, 1988.

    CAS  Google Scholar 

  30. Lenarczyk, M., E. P. Cohen, B. L. Fish, A. A. Irving, M. Sharma, C. D. Driscoll, and J. E. Moulder. Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat. Res. 171:164–172, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis, S. A., T. Takimoto, S. Mehrvar, H. Higuchi, A.-L. Doebley, G. Stokes, N. Sheibani, S. Ikeda, M. Ranji, and A. J. P. Ikeda. The effect of Tmem135 overexpression on the mouse heart. PLoS ONE 13:e0201986, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, Q., G. Grant, and T. Vo-Dinh. Investigation of synchronous fluorescence method in multicomponent analysis in tissue. IEEE J. Sel. Top. Quantum Electron. 16:927–940, 2010.

    Article  CAS  Google Scholar 

  33. MacVittie, T. J., A. Bennett, C. Booth, M. Garofalo, G. Tudor, A. Ward, T. Shea-Donohue, D. Gelfond, E. McFarland, and W. Jackson, III. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation. Health Phys. 103:427, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Medhora, M., F. Gao, T. Gasperetti, J. Narayanan, A. H. Khan, E. R. Jacobs, and B. L. Fish. Delayed effects of acute radiation exposure (Deare) in Juvenile and old rats: mitigation by lisinopril. Health Phys. 116(4):529–545, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Medhora, M., F. Gao, Q. Wu, R. C. Molthen, E. R. Jacobs, J. E. Moulder, and B. L. Fish. Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat. Res. 182:545–555, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moulder, J. E., E. P. Cohen, and B. L. Fish. Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int. J. Radiat. Biol. 90:762–768, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moulder, J. E., E. P. Cohen, and B. L. Fish. Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int. J. Radiat. Biol. 90:762–768, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moulder, J. E., and B. L. Fish. Effect of sequencing on combined toxicity of renal irradiation and cisplatin. NCI Monogr. 6:35–39, 1988.

    Google Scholar 

  39. Nuutinen, E. M. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Res. Cardiol. 79:49–58, 1984.

    Article  CAS  PubMed  Google Scholar 

  40. Okunieff, P., Y. Chen, D. J. Maguire, and A. K. Huser. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev. 27:363–374, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robbins, M. E., R. S. Jaenke, T. Bywaters, S. J. Golding, M. Rezvani, E. Whitehouse, and J. W. Hopewell. Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat. Res. 135:351–364, 1993.

    Article  CAS  PubMed  Google Scholar 

  42. Robbins, M., and W. Zhao. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int. J. Radiat. Biol. 80:251–259, 2004.

    Article  CAS  PubMed  Google Scholar 

  43. Robbins, M. E., W. Zhao, C. S. Davis, S. Toyokuni, and S. M. Bonsib. Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 33:133–141, 2002.

    Article  CAS  PubMed  Google Scholar 

  44. Sepehr, R., K. Staniszewski, S. Maleki, E. R. Jacobs, S. Audi, and M. Ranji. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. J. Biomed. Opt. 17:0460101–0460107, 2012.

    Article  CAS  Google Scholar 

  45. Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48:9–31, 1986.

    Article  CAS  PubMed  Google Scholar 

  46. Sosunov, S. A., X. Ameer, Z. V. Niatsetskaya, I. Utkina-Sosunova, V. I. Ratner, and V. S. Ten. Isoflurane anesthesia initiated at the onset of reperfusion attenuates oxidative and hypoxic-ischemic brain injury. PLoS ONE 10:e0120456, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stowe, D. F., and A. K. Camara. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox Signal. 11:1373–1414, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vidt, D. G., E. L. Bravo, and F. M. N. J. E. J. O. M. Fouad. Captopri 306:214–219, 1982.

    CAS  Google Scholar 

  49. Watanabe Nemoto, M., K. Isobe, G. Togasaki, A. Kanazawa, M. Kurokawa, M. Saito, R. Harada, H. Kobayashi, H. Ito, and T. Uno. Delayed renal dysfunction after total body irradiation in pediatric malignancies. J. Radiat. Res. 55:996–1001, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, J. P., S. L. Brown, G. E. Georges, M. Hauer-Jensen, R. P. Hill, A. K. Huser, D. G. Kirsch, T. J. MacVittie, K. A. Mason, M. M. Medhora, J. E. Moulder, P. Okunieff, M. F. Otterson, M. E. Robbins, J. B. Smathers, and W. H. McBride. Animal Models for Medical Countermeasures to Radiation Exposure. Radiat. Res. 173:557–578, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Brian Fish, Jayashree Narayanan, Tracy Gasperetti, and James Heisner for excellent animal care, irradiation, dosimetry and tissue harvesting. We also are thankful for funding support from UWM RGI 101X290 and 101 × 397, NIAID R01-101898, U01-107305, U01AI33594, Department of Radiation Oncology, Cardiovascular and Cancer Centers at MCW and NIH grant R01HL116530.

Conflict of interest

None Declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amadou K. S. Camara or Mahsa Ranji.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrvar, S., la Cour, M.F., Medhora, M. et al. Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril. Ann Biomed Eng 47, 1564–1574 (2019). https://doi.org/10.1007/s10439-019-02255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02255-8

Keywords

Navigation