Skip to main content
Log in

Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

Normal tissue radiation injury is a common complication of radiation therapy and is also a major concern after accidental or belligerent radiation exposure, and until recently, it was deemed untreatable. Both experimental and clinical evidence now show that radiation injury can be alleviated by agents started after irradiation but before manifestation of that injury (a therapeutic approach called “mitigation”). Mitigation of normal tissue injuries would improve clinical radiation therapy, and it will be an essential medical countermeasure for accidental or belligerent radiation exposures. In rat radiation nephropathy models over 30 potential mitigators have been tested, some (e.g., angiotensin converting enzyme inhibitors and angiotensin II receptor blockers) have been found to be quite effective, but many others appear ineffective, and a few have actually made injury worse. For the most part, work with the successful agents, and the agents that made radiation injury worse, is in the peer-reviewed literature. However, we have found it difficult to publish information on the agents that were ineffective, although we suspect that others have tried some of the same agents and also found them ineffective. Here, we review all agents we know of that have been tested to date in rat radiation nephropathy models, with the goal of helping to prevent needless duplication of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Movsas B, Vikram B, Hauer-Jensen M, Moulder JE, Basch E, Brown SL, Kachnic LA, Dicker AP, Coleman CN, Okunieff P (2011) Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clin Cancer Res 17(2):222–228

    Article  CAS  PubMed  Google Scholar 

  2. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR, Grdina DJ, Greenberger JS, Hauer-Jensen M, Hill RP, Kolesnick RN, Macvittie TJ, Marks C, McBride WH, Metting N, Pellmar T, Purucker M, Robbins ME, Schiestl RH, Seed TM, Tomaszewski JE, Travis EL, Wallner PE, Wolpert M, Zaharevitz D (2004) Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI workshop, December 3–4, 2003. Radiat Res 162(6):711–728

    Article  CAS  PubMed  Google Scholar 

  3. Hafer N, Cassatt D, Dicarlo A, Ramakrishnan N, Kaminski J, Norman MK, Maidment B, Hatchett R (2010) NIAID/NIH radiation/nuclear medical countermeasures product research and development program. Health Phys 98(6):903–905

    Article  CAS  PubMed  Google Scholar 

  4. Cohen EP, Moulder JE (2011) Radiation nephropathy. In: Cohen EP (ed) Cancer and the kidney. Oxford University Press, Oxford, pp 193–204

    Google Scholar 

  5. Robbins ME, Diz DI (2006) Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Rad Oncol Biol Phys 64(1):6–12

    Article  CAS  Google Scholar 

  6. Robbins MEC, Bonsib SM (1995) Radiation nephropathy: a review. Scan Micros 9:535–560

    CAS  Google Scholar 

  7. Singh N, McNeely J, Parikh S, Bhinder A, Rovin BH, Shidham G (2013) Kidney complications of hematopoietic stem cell transplantation. Am J Kidney Dis 61(5):809–821

    Article  CAS  PubMed  Google Scholar 

  8. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE (2010) Radiation-associated kidney injury. Int J Rad Oncol Biol Phys 76(suppl 1):S108–S115

    Article  Google Scholar 

  9. Kal HB, van Kempen-Harteveld ML (2006) Renal dysfunction after total body irradiation: dose-effect relationship. Int J Rad Oncol Biol Phys 65(4):1228–1232

    Article  Google Scholar 

  10. Humphreys MH, Alfrey AC (1986) Vascular diseases of the kidney. In: Brenner BM, Rector FC (eds) The kidney, 3rd edn. W. B. Saunders, Philadelphia, pp 1175–1220

    Google Scholar 

  11. Cohen EP, Fish BL, Moulder JE (2002) The renin-angiotensin system in experimental radiation nephropathy. J Lab Clin Med 139:251–257

    Article  CAS  PubMed  Google Scholar 

  12. Geraci JP, Sun MC, Mariano MS (1995) Amelioration of radiation nephropathy in rats by postirradiation treatment with dexamethasone and/or captopril. Radiat Res 143:58–68

    Article  CAS  PubMed  Google Scholar 

  13. Moulder JE, Fish BL, Cohen EP (1998) Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int J Radiat Biol 73:415–421

    Article  CAS  PubMed  Google Scholar 

  14. Bourgier C, Levy A, Vozenin MC, Deutsch E (2012) Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metas Rev 31(3–4):699–712

    Article  CAS  Google Scholar 

  15. Allison RR (2014) Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 10(15):2359–2379

    Article  CAS  PubMed  Google Scholar 

  16. Cohen EP, Fish BL, Moulder JE (2010) Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Cur Drug Targets 11(11):1423–1429

    Article  CAS  Google Scholar 

  17. Lenarczyk M, Cohen EP, Fish BL, Irving AA, Sharma M, Driscoll CD, Moulder JE (2009) Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat Res 171(2):164–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moulder JE, Cohen EP, Fish BL (2011) Captopril and losartan for mitigation of renal injury caused by single-dose total body irradiation. Radiat Res 175(1):29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moulder JE, Fish BL, Cohen EP (1997) Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transplant 19:729–736

    Article  CAS  PubMed  Google Scholar 

  20. Juncos LI, Carrasco Dueñas S, Cornejo JC, Broglia CA, Cejas H (1993) Long-term enalapril and hydrochlorothiazide in radiation nephritis. Nephron 64:249–255

    Article  CAS  PubMed  Google Scholar 

  21. Moulder JE, Cohen EP, Fish BL (2014) Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int J Radiat Biol 90(9):762–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE (2007) Role of the angiotensin II type-2 receptor in radiation nephropathy. Trans Res 150(2):106–115

    Article  CAS  Google Scholar 

  23. Sieber F, Muir SA, Cohen EP, Fish BL, Mäder M, Schock AM, Althouse BJ, Moulder JE (2011) Dietary selenium for the mitigation of radiation injury: effects of selenium dose escalation and timing of supplementation. Radiat Res 176(3):366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmoud J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anti-Cancer Agents Med Chem 11(4):359–372

    Article  CAS  Google Scholar 

  25. Bodiga S, Zhang R, Jacobs DE, Larsen BT, Tampo A, Manthati VL, Kwok WM, Zeldin DC, Falck JR, Gutterman DD, Jacobs ER, Medhora MM (2009) Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels. J Molec Cell Cardiol 46(6):978–988

    Article  CAS  Google Scholar 

  26. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011) Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 22(2):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Iturbe B, Franco M, Johnson RJ (2013) Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Curr Opin Nephrol Hypertens 22(1):37–44

    Article  PubMed  Google Scholar 

  28. Rudemiller N, Lund H, Jacob HJ, Geurts AM, Mattson DL (2014) CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63(3):559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geraci JP, Mariano MS, Jackson KL (1993) Amelioration of radiation nephropathy in rats by dexamethasone treatment after irradiation. Radiat Res 134(1):86–93

    Article  CAS  PubMed  Google Scholar 

  30. Cohen EP, Bedi M, Irving AA, Jacobs ER, Tomic R, Klein JP, Lawton CA, Moulder JE (2012) Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int J Rad Oncol Biol Phys 83(1):292–296

    Article  Google Scholar 

  31. Cohen EP, Fish BL, Irving AA, Rajapurkar MM, Shah SV, Moulder JE (2009) Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiat Res 172(2):260–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moulder JE, Fish BL, Cohen EP (1998) Brief pharmacologic intervention in experimental radiation nephropathy. Radiat Res 150:535–541

    Article  CAS  PubMed  Google Scholar 

  33. Cohen EP, Fish BL, Moulder JE (1999) Angiotensin II infusion exacerbates radiation nephropathy. J Lab Clin Med 134:283–291

    Article  CAS  PubMed  Google Scholar 

  34. Lenarczyk M, Su J, Haworth ST, Komorowski RA, Fish BL, Migrino RQ, Harmann L, Hopewell JW, Kronenberg A, Patel S, Moulder JE, Baker JE (2015) Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation. Pharm Res Perspec 3(3):e00145

    Article  Google Scholar 

  35. Moulder JE, Robbins MEC, Cohen EP, Hopewell JW, Ward WF (1998) Pharmacologic modification of radiation-induced late normal tissue injury. Cancer Treat Res 93:129–151

    Article  CAS  PubMed  Google Scholar 

  36. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241(1):F85–F93

    CAS  PubMed  Google Scholar 

  37. Wenzel U (2008) Aldosterone and progression of renal disease. Curr Opin Nephrol Hypertens 17(1):44–50

    CAS  PubMed  Google Scholar 

  38. Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X (2014) Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Resp Cell Molec Biol 50(4):723–736

    Article  Google Scholar 

  39. Peng H, Carretero OA, Liao TD, Peterson EL, Rhaleb NE (2007) Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension. Hypertension 49(3):695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao WL, Robbins MEC (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Article  CAS  PubMed  Google Scholar 

  41. Cohen EP, Lenarczyk M, Fish BL, Jia S, Hessner MJ, Moulder JE (2013) Evaluation of genomic evidence for oxidative stress in experimental radiation nephropathy. J Genet Disorders Genet Rep 2:Article 1

  42. Fritz G, Henninger C, Huelsenbeck J (2011) Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br Med Bull 97:17–26

    Article  CAS  PubMed  Google Scholar 

  43. Small W, James JL, Moore TD, Fintel DJ, Lutz ST, Movsas B, Suntharalingam M, Grarces YI, Ivker R, Moulder JE, Pugh S, Berk LB (2015) Utility of the ACE inhibitor captopril in mitigating radiation-associated pulmonary toxicity in lung cancer: Results from NRG Oncology RTOG 0123. Amer J. Clin. Oncol. (in press).

  44. Aebersold P (2012) FDA experience with medical countermeasures under the Animal Rule. Adv Prev Med 2012:507571

    Article  PubMed  PubMed Central  Google Scholar 

  45. Singh VK, Romaine PLP, Seed TM (2015) Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval status and inclusion into the Strategic National Stockpile. Health Phys 108(6):607–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ward WF, Lin PJ, Wong PS, Behnia R, Jalali N (1993) Radiation pneumonitis in rats and its modification by the angiotensin-converting enzyme inhibitor captopril evaluated by high-resolution computed tomography. Radiat Res 135:81–87

    Article  CAS  PubMed  Google Scholar 

  47. Medhora M, Gao F, Jacobs E, Moulder JE, Fish BL (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182(5):545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molteni A, Wolfe LF, Ward WF, Ts’ao CH, Molteni LB, Veno P, Fish BL, Taylor JM, Quintalilla N, Herndon B, Moulder JE (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-β (TGF-β) and α-actomyosin (αSMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Design 13(13):1307–1316

    Article  CAS  Google Scholar 

  49. Kharofa JR, Cohen EP, Tomic R, Xiang Q, Gore E (2012) Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Rad Oncol Biol Phys 84(1):238–243

    Article  CAS  Google Scholar 

  50. Kohl RR, Kolozsvary A, Brown SL, Zhu G, Kim JH (2007) Differential radiation effect in tumor and normal tissue after treatment with ramipril, an angiotensin-converting enzyme inhibitor. Radiat Res 168(4):440–445

    Article  CAS  PubMed  Google Scholar 

  51. Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, Carretero OA (2004) Modification of radiation injury by Ramipril, inhibitor of angiotensin converting enzyme, on optic neuropathy in the rat. Radiat Res 161(2):137–142

    Article  CAS  PubMed  Google Scholar 

  52. Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI (2010) Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Cur Drug Targets 11(11):1413–1422

    Article  CAS  Google Scholar 

  53. Jenrow KA, Brown SL, Liu J, Kolozsvary A, Kim JH (2010) Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol 5 (1):Article 6

Download references

Compliance with ethical standards

Funding

These studies were supported by the Department of Veterans Affairs Office of Research and Development, by the Department of Veterans Affairs Merit Review grants to EPC, and by the National Institutes of Health grants CA24652 and AI067734 to JEM.

Conflict of interests

EPC, JEM, and BLF have no conflict of interests. JDI has patents and patent applications that cover the composition of matter for EET analogs.

Research involving animals

Although this is a review article, some previously unpublished animal studies are referenced. Nevertheless, all animal studies have been approved by the appropriate Animal Care and Use Committee, and all institutional and national guidelines for the care and use of laboratory animals were followed.

Research involving humans

Statement of informed consent was not applicable since the manuscript does not contain any patient data, although it does refer to the conclusions of previously published human data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Moulder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, E.P., Fish, B.L., Imig, J.D. et al. Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. J Radiat Oncol 5, 1–8 (2016). https://doi.org/10.1007/s13566-015-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-015-0222-7

Keywords

Navigation