Skip to main content
Log in

Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A cyclic stretch and perfusion bioreactor was designed to culture large diameter engineered tissue tubes for heart valve applications. In this bioreactor, tubular tissues consisting of dermal fibroblasts in a sacrificial fibrin gel scaffold were placed over porated latex support sleeves and mounted in a custom bioreactor. Pulsatile flow of culture medium into the system resulted in cyclic stretching as well as ablumenal, lumenal, and transmural flow (perfusion). In this study, lumenal remodeling, composition, and mechanical strength and stiffness were compared for tissues cyclically stretched in this bioreactor on either the porated latex sleeves or solid latex sleeves, which did not permit lumenal or transmural flow. Tissues cyclically stretched on porated sleeves had regions of increased lumenal remodeling and cellularity that were localized to the columns of pores in the latex sleeve. A CFD model was developed with COMSOL Multiphysics® to predict flow of culture medium in and around the tissue, and the predictions suggest that the enhanced lumenal remodeling was likely a result of elevated shear stresses and transmural velocity in these regions. This work highlights the beneficial effects of increased nutrient transport and flow stimulation for accelerating in vitro tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

Pe:

Peclet number

TEHV:

Tissue-engineered heart valve

UTS:

Ultimate tensile strength

References

  1. Bjork, J. W., and R. T. Tranquillo. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 104:1197–1206, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cartmell, S. H., B. D. Porter, A. J. Garcia, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Eng. A 20:2883–2891, 2014.

    Article  CAS  Google Scholar 

  4. Dijkman, P. E., A. Driessen-Mol, L. Frese, S. P. Hoerstrup, and F. P. T. Baaijens. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33:4545–4554, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Ehsan, S. M., and S. C. George. Nonsteady state oxygen transport in engineered tissue: implications for design. Tissue Eng. A 19:1433–1442, 2013.

    Article  CAS  Google Scholar 

  6. Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292, 2014.

    Article  PubMed  Google Scholar 

  8. Hoerstrup, S. P., G. Zünd, R. Sodian, A. M. Schnell, J. Grünenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 20:164–169, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Kitagawa, T., T. Yamaoka, R. Iwase, and A. Murakami. Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol. Bioeng. 93:947–954, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Malda, J., T. J. Klein, and Z. Upton. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 13:2153–2162, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Nauman, J. V., P. G. Campbell, F. Lanni, and J. L. Anderson. Diffusion of insulin-like growth factor-i and ribonuclease through fibrin gels. Biophys. J. 92:4444–4450, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Pazzano, D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, and L. J. Bonassar. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol. Prog. 16:893–896, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Radisic, M., L. Yang, J. Boublik, R. J. Cohen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H507–H516, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, B. Weber, M. Y. Emmert, G. Zund, F. P. Baaijens, and S. P. Hoerstrup. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.

    Article  PubMed  Google Scholar 

  16. Seliktar, D., R. Black, R. Vito, and R. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Shi, Z. D., and J. M. Tarbell. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann. Biomed. Eng. 39:1608–1619, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  CAS  PubMed  Google Scholar 

  19. Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105:6537–6542, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Syedain, Z., L. Meier, J. Reimer, and R. Tranquillo. Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41:2645–2654, 2013.

    Article  PubMed  Google Scholar 

  24. Tschoeke, B., T. C. Flanagan, S. Koch, M. S. Harwoko, T. Deichmann, V. Ella, J. S. Sachweh, M. Kellomaki, T. Gries, T. Schmitz-Rode, and S. Jockenhoevel. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng. A 15:1909–1918, 2009.

    Article  CAS  Google Scholar 

  25. Wang, D. M., and J. M. Tarbell. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117:358–363, 1995.

    Article  CAS  PubMed  Google Scholar 

  26. Weidenhamer, N. K., D. L. Moore, F. L. Lobo, N. T. Klair, and R. T. Tranquillo. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues. J. Tissue Eng. Regen. Med. 9:605–618, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Eng. 12:1489–1502, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alex Weston, Naomi Ferguson, Sandra Johnson, Susan Saunders, Jay Reimer, and Zeeshan Syedain for technical assistance and the University of Minnesota Supercomputing Institute for computing resources. This study was funded by an NSF Graduate Research Fellowship (J.B.S.) and NIH R01 HL107572 (R.T.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Tranquillo.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, J.B., Tranquillo, R.T. Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes. Ann Biomed Eng 44, 1785–1797 (2016). https://doi.org/10.1007/s10439-015-1437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1437-x

Keywords

Navigation