Skip to main content
Log in

Human Saphenous Vein Response to Trans-wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2015

Abstract

Autologous saphenous veins are commonly used for the coronary artery bypass grafting even if they are liable to progressive patency reduction, known as ‘vein graft disease’. Although several cellular and molecular causes for vein graft disease have been identified using in vivo models, the metabolic cues induced by sudden interruption of vasa vasorum blood supply have remained unexplored. In the present manuscript, we describe the design of an ex vivo culture system allowing the generation of an oxygen gradient between the luminal and the adventitial sides of the vein. This system featured a separation between the inner and the outer vessel culture circuits, and integrated a purpose-developed de-oxygenator module enabling the trans-wall oxygen distribution (high oxygen level at luminal side and low oxygen level at the adventitial side) existing in arterialized veins. Compared with standard cultures the bypass-specific conditions determined a significant increase in the proliferation of cells around adventitial vasa vasorum and an elevation in the length density of small and large caliber vasa vasorum. These results suggest, for the first time, a cause-effect relationship between the vein adventitial hypoxia and a neo-vascularization process, a factor known to predispose the arterialized vein conduits to restenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Berard, X., S. Deglise, F. Alonso, F. Saucy, P. Meda, L. Bordenave, J. M. Corpataux, and J. A. Haefliger. Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins. J. Vasc. Surg. 57:1371–1382, 2013.

    Article  PubMed  Google Scholar 

  2. Bhardwaj, S., H. Roy, M. Babu, M. Shibuya, and S. Yla-Herttuala. Adventitial gene transfer of VEGFR-2 specific VEGF-E chimera induces MCP-1 expression in vascular smooth muscle cells and enhances neointimal formation. Atherosclerosis. 219:84–91, 2011.

    Article  CAS  PubMed  Google Scholar 

  3. Dummler, S., S. Eichhorn, C. Tesche, U. Schreiber, B. Voss, M.-A. Deutsch, H. Hauner, H. Lahm, R. Lange, and M. Krane. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression. BioMed. Eng. OnLine 10:62, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Faller, D. V. Endothelial cell responses to hypoxic stress. Clin. Exp. Pharmacol. Physiol. 26:74–84, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.

    Article  PubMed  Google Scholar 

  6. Gusic, R. J., M. Petko, R. Myung, J. W. Gaynor, and K. J. Gooch. Mechanical properties of native and ex vivo remodeled porcine saphenous veins. J. Biomech. 38:1770–1779, 2005.

    Article  PubMed  Google Scholar 

  7. Joddar, B., M. S. Firstenberg, R. K. Reen, S. Varadharaj, M. Khan, R. C. Childers, J. L. Zweier, and K. J. Gooch. Arterial levels of oxygen stimulate intimal hyperplasia in human saphenous veins via a ROS-dependent mechanism. PLoS ONE 10:e0120301, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Joddar, B., R. J. G. Shaffer, R. K. Reen, and K. J. Gooch. Arterial pO2 stimulates intimal hyperplasia and serum stimulates inward eutrophic remodeling in porcine saphenous veins cultured ex vivo. Biomech. Model. Mechanobiol. 10:161–175, 2010.

    Article  PubMed  Google Scholar 

  9. Lim, C. S., M. S. Gohel, A. C. Shepherd, E. Paleolog, and A. H. Davies. Venous hypoxia: a poorly studied etiological factor of varicose veins. J. Vasc. Res. 48:185–194, 2011.

    Article  CAS  PubMed  Google Scholar 

  10. Locker, C., H. V. Schaff, J. A. Dearani, L. D. Joyce, S. J. Park, H. M. Burkhart, R. M. Suri, K. L. Greason, J. M. Stulak, Z. Li, and R. C. Daly. Multiple arterial grafts improve late survival of patients undergoing coronary artery bypass graft surgery: analysis of 8622 patients with multivessel disease. Circulation 126:1023–1030, 2012.

    Article  PubMed  Google Scholar 

  11. McGeachie, J., P. Campbell, and F. Prendergast. Vein to artery grafts. A quantitative study of revascularization by vasa vasorum and its relationship to intimal hyperplasia. Ann. Surg. 194:100–107, 1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miyakawa, A. A., L. A. O. Dallan, S. Lacchini, T. F. Borin, and J. E. Krieger. Human saphenous vein organ culture under controlled hemodynamic conditions. Clinics 63:683–688, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muto, A., L. Model, K. Ziegler, S. D. D. Eghbalieh, and A. Dardik. Mechanisms of vein graft adaptation to the arterial circulation. Circ. J. 74:1501–1512, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newby, A. C. Coronary vein grafting: the flags keep waving but the game goes on. Cardiovasc. Res. 97:193–194, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Owens, C. D. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J. Vasc. Surg. 51:736–746, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paroz, A., H. Probst, F. Saucy, L. Mazzolai, E. Rizzo, H. B. Ris, and J. M. Corpataux. Comparison of morphological and functional alterations of human saphenous veins after seven and fourteen days of ex vivo perfusion. Eur. Surg. Res. 36:274–281, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Pesce, M., A. Orlandi, M. G. Iachininoto, S. Straino, A. R. Torella, V. Rizzuti, G. Pompilio, G. Bonanno, G. Scambia, and M. C. Capogrossi. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ. Res. 93:e51–e62, 2003.

    Article  PubMed  Google Scholar 

  18. Piola, M. F., N. Prandi, M. Bono, E. Soncini, M. Penza, G. Agrifoglio, M. Polvani, M. Pesce, and G. B. Fiore. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1798.

    PubMed  Google Scholar 

  19. Piola, M., M. Soncini, M. Cantini, N. Sadr, G. Ferrario, and G. B. Fiore. Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds. Sci. World J. 2013:123974, 2013.

    Article  Google Scholar 

  20. Piola, M., M. Soncini, F. Prandi, G. Polvani, G. Beniamino Fiore, and M. Pesce. Tools and procedures for ex vivo vein arterialization, preconditioning and tissue engineering: a step forward to translation to combat the consequences of vascular graft remodeling. Recent Pat Cardiovasc Drug Discov. 7:186–195, 2012.

    Article  CAS  PubMed  Google Scholar 

  21. Prandi, F., M. Piola, M. Soncini, C. Colussi, Y. D’Alessandra, E. Penza, M. Agrifoglio, M. C. Vinci, G. Polvani, C. Gaetano, G. B. Fiore, and M. Pesce. Adventitial vessel growth and progenitor cells activation in an ex vivo culture system mimicking human saphenous vein wall strain after coronary artery bypass grafting. PLoS ONE 10:e0117409, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rey, J., H. Probst, L. Mazzolai, F. T. B. Bosman, M. Pusztaszeri, N. Stergiopulos, H. B. Ris, D. Hayoz, F. Saucy, and J. M. Corpataux. Comparative assessment of intimal hyperplasia development after 14 days in two different experimental settings: tissue culture versus ex vivo continuous perfusion of human saphenous vein. J. Surg. Res. 121:42–49, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Saucy, F., H. Probst, F. Alonso, X. Berard, S. Deglise, S. Dunoyer-Geindre, L. Mazzolai, E. Kruithof, J. A. Haefliger, and J. M. Corpataux. Ex vivo pulsatile perfusion of human saphenous veins induces intimal hyperplasia and increased levels of the plasminogen activator inhibitor 1. Eur. Surg. Res. 45:50–59, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Shukla, N., and J. Y. Jeremy. Pathophysiology of saphenous vein graft failure: a brief overview of interventions. Curr. Opin. Pharmacol. 12:114–120, 2012.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, K., D. Nagata, Y. Hirata, Y. Tabata, R. Nagai, and M. Sata. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice. Atherosclerosis 215:366–373, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Voisard, R., E. Ramiz, R. Baur, I. Gastrock-Balitsch, H. Siebeneich, O. Frank, V. Hombach, A. Hannekum, and B. Schumacher. Pulsed perfusion in a venous human organ culture model with a Windkessel function (pulsed perfusion venous HOC-model). Med. Sci. Monit. 16(11):CR523–CR529, 2010.

    PubMed  Google Scholar 

  27. Wallitt, E. J., M. Jevon, and P. I. Hornick. Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann. Thorac. Surg. 84:317–323, 2007.

    Article  PubMed  Google Scholar 

  28. Westerband, A., A. T. Gentile, G. C. Hunter, M. A. Gooden, M. L. Aguirre, S. S. Berman, and J. L. Mills. Intimal growth and neovascularization in human stenotic vein grafts. J. Am. Coll. Surg. 191:264–271, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health research Project RF-2011-02346867. The authors would also like to thank Dr. Elena Bresciani for her support during the designing and manufacturing of the de-oxygenator module and Dr. Martina Malavasi for her support in functional assessment of the ex vivo culture system.

Conflict of interest

The authors declare no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piola.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Marco Piola and Francesca Prandi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

A) Simplified scheme of the DC-EVCS consisting of the inner chamber and the de-oxygenator flow circuit. Physical model of the multiple layers inherent to the silicone tubing membrane system used as de-oxygenator. In the figure, C IN and C OUT are the oxygen concentration at the inlet and outlet of the inner culture chamber; In N 2 and Out N 2 , are the inlet and outlet port for the nitrogen (N 2 ) connection line, and Q is the recirculating flow rate. With regard to the tubing, J is the local oxygen transfer per unit length crossing the tubing wall by diffusion (green arrow), t is the tubing thickness, Ro and Ri are the outer and inner radius respectively; v is the fluid velocity through the tubing; pO 2 OUT Deoxy and pO 2 IN Deoxy represent the oxygen partial pressures at the inlet and at the outlet of a silicone tubing of length L, pO 2x and pO 2x+Δx are the oxygen partial pressures at the inlet and at the outlet of a generic infinitesimal tubing element of length Δx; pO 2GAS is the oxygen partial pressure within the de-oxygenator chamber. (B) Length of the silicone tubing as a function of the recirculating medium flow rate. The tubing length is parameterized for different values of the desired reduction of fluid oxygen partial pressure at the outlet of the silicone tubing. The oxygen reduction is defined as: pO 2 IN Deoxy - pO 2 OUT Deoxy . The pink area highlights the suitable solution region (silicone tubing length < 100 cm) in the length/flow rate graph. C) Oxygen concentration (C OUT ) trend as a function of time. The oxygen concentration is parameterized for different values of recirculation flow rate (Q), and for different silicone tubing length:20 cm, 40 cm, and 80 cm. c GAS is set equal to 0 mmol/ml and c 0 equal to 2.09×10-4 mmol/ml. (PNG 241 kb)

Figure S2

A) Scheme of the open loop setup for testing the de-oxygenator module without recirculation. The peristaltic pump draws the fluid from the reservoir 1 to the de-oxygenator module and finally to the reservoir 2. Silicone tubing are used for connecting the reservoir 1 to the de-oxygenator, while PVC tubing (lower permeability to oxygen) are used for connecting the de-oxygenator to the reservoir 2. The oxygen flow chamber sensor is placed between the de-oxygenator and reservoir 2. Pure nitrogen is used within the de-oxygenator for driving the extraction of oxygen from the silicone tubing. B) Scheme of the closed loop setup for studying the transient and steady state of the system. PVC tubing (lower permeability to oxygen) are used for connecting the de-oxygenator to the inner chamber. The oxygen flow chamber sensor is placed between the inner chamber reservoir (red box) and the de-oxygenator module. (PNG 112 kb)

Figure S3

Quantification of TUNEL+ cells in the SV wall. Arrows indicate TUNEL+ nuclei. Statistical comparison by paired t-test did not show significant differences (n=4 CABG samples; n=3 standard samples). (PNG 927 kb)

Figure S4

Schematic representation of the length density quantification. In figure, t is the thickness of the histological section, a i and b i are the major and minor axes of the elliptical print, α i is the angle between the axis of the cylinder and the surface, and l i is the length of the vessel. (PNG 26 kb)

Supplementary material 5 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piola, M., Prandi, F., Fiore, G.B. et al. Human Saphenous Vein Response to Trans-wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform. Ann Biomed Eng 44, 1449–1461 (2016). https://doi.org/10.1007/s10439-015-1434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1434-0

Keywords

Navigation