Skip to main content
Log in

Computational Patient Avatars for Surgery Planning

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper a new method is described for the generation of computational patient avatars for surgery planning. By “patient avatar” a computational, patient-specific, model of the patient is meant, that should be able to provide the surgeon with an adequate response under real-time restrictions, possibly including haptic response. The method is based on the use of computational vademecums (F. Chinesta et al., PGD-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1):31–59, 2013), that are properly interpolated so as to generate a patient-specific model. It is highlighted how the interpolation of shapes needs for a specialized technique, since a direct interpolation of biological shapes would produce, in general, non-physiological shapes. To this end a manifold learning technique is employed, that allows for a proper interpolation that provides very accurate results in describing patient-specific organ geometries. These interpolated vademecums thus give rise to very accurate patient avatars able to run at kHz feedback rates, enabling not only visual, but also haptic response to the surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alfaro, I., D. Gonzalez, F. Bordeu, A. Leygue, A. Ammar, E. Cueto, and F. Chinesta. Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices. J. Comput. Surg. 1(1):2194–3990, 2014.

    Article  Google Scholar 

  2. Allaire, G., F. Jouve, and A.-M. Toader. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1):363–393, 2004.

    Article  Google Scholar 

  3. Ammar, A., F. Chinesta, P. Diez, and A. Huerta. An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng. 199(25–28):1872–1880, 2010.

    Article  Google Scholar 

  4. Ammar, A., E. Cueto, F. Chinesta. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. Int. J. Numer. Methods Biomed. Eng. 28(9):960–973, 2012.

    Article  Google Scholar 

  5. Bernoulli, C. Vademecum des Mechanikers. Stuttgart: Cotta, 1836.

    Google Scholar 

  6. Bro-Nielsen, M., and S. Cotin. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3):57–66, 1996.

    Article  Google Scholar 

  7. Burger, M., B. Hackl, and W. Ring. Incorporating topological derivatives into level set methods. J. Comput. Phys. 194(1):344–362, 2004.

    Article  Google Scholar 

  8. Chinesta, F., A. Ammar, and E. Cueto. Recent advances in the use of the Proper Generalized Decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17(4):327–350, 2010.

    Article  Google Scholar 

  9. Chinesta, F., and E. Cueto. PGD-Based Modeling of Materials, Structures and Processes. Switzerland: Springer International Publishing, 2014.

    Book  Google Scholar 

  10. Chinesta, F., P. Ladeveze, and E. Cueto. A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18:395–404, 2011.

    Article  Google Scholar 

  11. Chinesta, F., A. Leygue, F. Bordeu, J.V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, and A. Huerta. PGD-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1):31–59, 2013.

    Article  Google Scholar 

  12. Cotin, S., H. Delingette, and N. Ayache. Real-time elastic deformations of soft tissues for surgery simulation. In: IEEE Transactions on Visualization and Computer Graphics, Vol. 5(1), edited by H. Hagen. New York: IEEE Computer Society, 1999, pp. 62–73.

  13. Courtecuisse, H., J. Allard, P. Kerfriden, S. P. A. Bordas, S. Cotin, and C. Duriez. Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2):394–410, 2014.

    Article  PubMed  Google Scholar 

  14. Courtecuisse, H., H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin. Gpu-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103(2–3):159–168, 2010.

  15. Cueto, E., and F. Chinesta. Real time simulation for computational surgery: a review. Adv. Model. Simul. Eng. Sci. 1(1):11, 2014.

    Article  Google Scholar 

  16. Delingette, H., and N. Ayache. Soft tissue modeling for surgery simulation. In: Computational Models for the Human Body. Handbook of Numerical Analysis (Ph. Ciarlet, Ed.), edited by N. Ayache. Elsevier, Amsterdam, 2004, pp. 453–550.

  17. Delingette, H., and N. Ayache. Hepatic surgery simulation. Commun. ACM 48:31–36, 2005.

    Article  Google Scholar 

  18. Dimitrov, D. V. Systems patientomics: the virtual in-silico patient. New Horiz. Transl. Med. 2(1):1–4, 2014.

    Article  Google Scholar 

  19. Gonzalez, D., E. Cueto, and F. Chinesta. Real-time direct integration of reduced solid dynamics equations. Int. J. Numer. Methods Eng. 99(9):633–653, 2014.

    Article  Google Scholar 

  20. Laughlin, R. B., and D. Pines. The theory of everything. Proc. Natl Acad. Sci. U.S.A. 97(1):28–31, 2000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Le Quilliec, G., B. Raghavan, and P. Breitkopf. A manifold learning-based reduced order model for springback shape characterization and optimization in sheet metal forming. Comput. Methods Appl. Mech. Eng. 285:621–638, 2015.

    Article  Google Scholar 

  22. Lorensen, W. E., and H. E. Cline. Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4):163–169, 1987.

    Article  Google Scholar 

  23. Meier, U., O. Lopez, C. Monserrat, M. C. Juan, and M. Alcaniz. Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77(3):183–197, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Miller, K., G. Joldes, D. Lance, and A. Wittek. Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2):121–134, 2007.

    Article  Google Scholar 

  25. Niroomandi, S., D. González, I. Alfaro, F. Bordeu, A. Leygue, E. Cueto, and F. Chinesta. Real-time simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5):586–600, 2013.

    Article  CAS  Google Scholar 

  26. Niroomandi, S., D. Gonzalez, I. Alfaro, E. Cueto, and F. Chinesta. Model order reduction in hyperelasticity: a proper generalized decomposition approach. Int. J. Numer. Methods Eng. 96(3):129–149, 2013.

    Google Scholar 

  27. Polito, M., and P. Perona. Grouping and dimensionality reduction by locally linear embedding. In: Advances in Neural Information Processing Systems, Vol. 14. Cambridge: MIT Press, 2001, pp. 1255–1262.

  28. Raghavan, B., L. Xia, P. Breitkopf, A. Rassineux, and P. Villon. Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design. Comput. Methods Appl. Mech. Eng. 265:174–185, 2013.

    Article  Google Scholar 

  29. Roweis, S. T., and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Schuon, S., M. Durkovic, K. Diepold, J. Scheuerle, and S. Markwardt. Truly incremental locally linear embedding. In: Proceedings of the CoTeSys 1st International Workshop on Cognition for Technical Systems, October 2008.

  31. Sharma, N., and L. Aggarwal. Automated medical image segmentation techniques. J. Med. Phys. 35(1):3–14, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taylor, Z.A., M. Cheng, and S. Ourselin. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans. Med. Imaging 27(5):650–663, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Spanish Ministry of Economy and Innovation through Grant No. DPI2014-51844-C2-1-R. This support is gratefully acknowledged. Collaboration provided by S. Nicolau, from IRCAD, France, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Cueto.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, D., Cueto, E. & Chinesta, F. Computational Patient Avatars for Surgery Planning. Ann Biomed Eng 44, 35–45 (2016). https://doi.org/10.1007/s10439-015-1362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1362-z

Keywords

Navigation